1887

Abstract

Exopolysaccharide (EPS) produced by sp. strain TAL1145 has been shown to be essential for effective nodulation on (leucaena). This paper reports the isolation and characterization of an alternative sigma factor gene, , involved in the regulation of EPS synthesis in TAL1145. Disruption of this gene in TAL1145 resulted in a Calcofluor-dim mutant RUH102 that produced approximately 18 % of the amount of EPS made by TAL1145. This mutation did not affect the normal growth of RUH102 in free-living state. RUH102 induced few nitrogen-fixing nodules, resulting in a significant reduction in total nitrogen content in leucaena. It was complemented for EPS production and nodulation by a 2·0 kb dIII fragment of TAL1145. Sequence analysis of this fragment revealed the ORF of 870 bp that encoded a protein of 32 kDa. Expression of the ORF in also revealed a 32 kDa protein. A PCR-constructed clone of 1263 bp, containing the ORF and its upstream putative regulatory region, complemented RUH102 for EPS defects. Comparison of the RpoH2 sequence to proteins in the databases showed significant similarity to RpoH-like sigma factors of other Gram-negative bacteria. By constructing several  : : Tn3Ho fusions and transferring them to the backgrounds of TAL1145 and RUH102, it was demonstrated that RpoH2 positively regulates the transcription of some genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27092-0
2004-10-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503473.html?itemId=/content/journal/micro/10.1099/mic.0.27092-0&mimeType=html&fmt=ahah

References

  1. Barnett, M. J., Swanson, J. A. & Long, S. R. ( 1998; ). Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance. Genetics 148, 19–32.
    [Google Scholar]
  2. Becker, A., Ruberg, S., Baumgarth, B., Bertram-Drogatz, P. A., Quester, L. & Puhler, A. ( 2002; ). Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J Mol Microbiol Biotechnol 4, 187–190.
    [Google Scholar]
  3. Beringer, J. E. ( 1974; ). R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.[CrossRef]
    [Google Scholar]
  4. Borthakur, D. & Gao, X. ( 1996; ). A 150-megadalton plasmid in Rhizobium etli strain TAL182 contains genes for nodulation competitiveness on Phaseolus vulgaris L. Can J Microbiol 42, 903–910.[CrossRef]
    [Google Scholar]
  5. Borthakur, D. & Johnston, A. W. B. ( 1987; ). Sequence of psi, a gene on the symbiotic plasmid of Rhizobium phaseoli which inhibits exopolysaccharide synthesis and nodulation and demonstration that its transcription is inhibited by psr, another gene on the symbiotic plasmid. Mol Gen Genet 207, 149–154.[CrossRef]
    [Google Scholar]
  6. Campbell, E. A., Muzzin, O., Chlenov, M., Sun, J. L., Olson, C. A., Weinman, O., Trester-Zedlitz, M. L. & Darst, S. A. ( 2002; ). Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9, 527–539.[CrossRef]
    [Google Scholar]
  7. Cheng, H. P. & Walker, G. C. ( 1998; ). Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180, 5183–5191.
    [Google Scholar]
  8. DeVries, C. A. & Ohman, D. E. ( 1994; ). Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176, 6677–6687.
    [Google Scholar]
  9. Ditta, G., Schmidhauser, T., Yakobson, E., Lu, P., Liang, X.-W., Finlay, D. R. & Helinski, D. R. ( 1985; ). Plasmids related to the broad host range vector pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13, 149–153.[CrossRef]
    [Google Scholar]
  10. Doherty, D., Leigh, J. A., Glazebrook, J. & Walker, G. C. ( 1988; ). Rhizobium meliloti mutants that overproduce the acidic Calcofluor-binding exopolysaccharide. J Bacteriol 170, 4249–4256.
    [Google Scholar]
  11. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  12. Fraysse, N., Couderc, F. & Poinsot, V. ( 2003; ). Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270, 1365–1380.[CrossRef]
    [Google Scholar]
  13. Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J. & Ausubel, F. M. ( 1982; ). Construction of a broad host range cosmid cloning vector and its use in genetic analysis of Rhizobium mutants. Gene 18, 289–296.[CrossRef]
    [Google Scholar]
  14. George, M. L. C., Young, J. P. W. & Borthakur, D. ( 1994; ). Genetic characterization of Rhizobium sp. strain TAL1145 that nodulates tree legumes. Can J Microbiol 40, 208–215.[CrossRef]
    [Google Scholar]
  15. Glazebrook, J. & Walker, G. C. ( 1989; ). A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56, 661–672.[CrossRef]
    [Google Scholar]
  16. Glazebrook, J., Reed, J. W., Reuber, T. L. & Walker, G. C. ( 1990; ). Genetic analyses of Rhizobium meliloti exopolysaccharides. Int J Biol Macromol 12, 67–70.[CrossRef]
    [Google Scholar]
  17. Gonzalez, J. E., Reuhs, B. & Walker, G. C. ( 1996; ). Low molecular weight EPS I of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc Nat Acad Sci U S A 93, 8636–8641.[CrossRef]
    [Google Scholar]
  18. Her, G.-R., Glazebrook, J., Walker, G. C. & Reinhold, V. N. ( 1990; ). Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr Res 198, 305–312.[CrossRef]
    [Google Scholar]
  19. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. ( 1987; ). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901–3907.
    [Google Scholar]
  20. Kaneko, T., Nakamura, Y., Sato, S. & 21 other authors ( 2000; ). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7, 331–338.[CrossRef]
    [Google Scholar]
  21. Keith, L. M. & Bender, C. L. ( 1999; ). AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181, 7176–7184.
    [Google Scholar]
  22. Keller, M., Roxlau, A., Weng, W. M., Schmidt, M., Quandt, J., Niehaus, K., Jording, D., Arnold, W. & Puhler, A. ( 1995; ). Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact 8, 267–277.[CrossRef]
    [Google Scholar]
  23. Malhotra, A., Severinova, E. & Darst, S. A. ( 1996; ). Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 87, 127–136.[CrossRef]
    [Google Scholar]
  24. Martinez-Salazar, J. M., Moreno, S., Najera, R., Boucher, J. C., Espin, G., Soberon-Chavez, G. & Deretic, V. ( 1996; ). Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178, 1800–1808.
    [Google Scholar]
  25. Niehaus, K. & Becker, A. ( 1998; ). The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Subcell Biochem 29, 73–116.
    [Google Scholar]
  26. Oke, V., Rushing, B. G., Fisher, E. J., Moghadam-Tabrizi, M. & Long, S. R. ( 2001; ). Identification of the heat-shock sigma factor RpoH and a second RpoH-like protein in Sinorhizobium meliloti. Microbiology 147, 2399–2408.
    [Google Scholar]
  27. Ono, Y., Mitsui, H., Sato, T. & Minamisawa, K. ( 2001; ). Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol Gen Genet 264, 902–912.[CrossRef]
    [Google Scholar]
  28. Ozga, D. A., Lara, J. C. & Leig, J. A. ( 1994; ). The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti. Mol Plant Microbe Interact 7, 758–765.[CrossRef]
    [Google Scholar]
  29. Parveen, N., Webb, D. T. & Borthakur, D. ( 1996; ). Leucaena leucocephala nodules formed by a surface polysaccharide defective mutant of Rhizobium sp. strain TAL1145 are delayed in bacteroid development and nitrogen fixation. Mol Plant Microbe Interact 9, 364–372.[CrossRef]
    [Google Scholar]
  30. Parveen, N., Webb, D. T. & Borthakur, D. ( 1997; ). The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate- and indeterminate-nodulating tree legumes. Microbiology 143, 1959–1967.[CrossRef]
    [Google Scholar]
  31. Reed, J. W., Glazebrook, J. & Walker, G. C. ( 1991; ). The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators. J Bacteriol 173, 3789–3794.
    [Google Scholar]
  32. Reinhold, B. B., Chan, S. Y., Reuber, T. L., Marra, A., Walker, G. C. & Reinhold, V. N. ( 1994; ). Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176, 1997–2002.
    [Google Scholar]
  33. Robertsen, B. K., Aman, P., Davill, A. G., McNeil, M. & Albersheim, P. ( 1981; ). Host-symbiont interactions. Plant Physiol 67, 389–400.[CrossRef]
    [Google Scholar]
  34. Ruvkun, G. B. & Ausubel, F. M. ( 1981; ). A general method for site-directed mutagenesis in prokaryotes. Nature 289, 85–88.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Stachel, S. E., An, G., Flores, C. & Nester, E. W. ( 1985; ). A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4, 891–898.
    [Google Scholar]
  37. Vincent, J. M. ( 1970; ). A Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell Scientific Publications.
  38. Wang, L.-X., Wang, Y., Pellock, B. & Walker, G. C. ( 1999; ). Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J Bacteriol 181, 6788–6796.
    [Google Scholar]
  39. York, W. S., Darvill, A. G., McNeil, M., Stevenson, T. T. & Albersheim, P. ( 1985; ). Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 118, 3–40.
    [Google Scholar]
  40. Zhan, H. J. & Leigh, J. A. ( 1990; ). Two genes that regulate exopolysaccharide production in Rhizobium meliloti. J Bacteriol 172, 5254–5259.
    [Google Scholar]
  41. Zhan, H. J., Levery, S. B., Lee, C. C. & Leigh, J. A. ( 1989; ). A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion. Proc Natl Acad Sci U S A 86, 3055–3059.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27092-0
Loading
/content/journal/micro/10.1099/mic.0.27092-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error