1887

Abstract

The Gram-positive soil bacterium and cellulose degrader synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. Downstream of the gene, a so far unknown gene was identified. The new gene and its mutated derivatives were cloned in as well as in and a gene-disruption mutant within the chromosome of the original host was constructed, comparative physiological, biochemical and immunological studies then allowed the deduction of the following characteristics of the novel gene product. (i) The protein was found extracellularly; the substitution of twin arginines within the signal peptide abolished its secretion. (ii) The highly purified protein interacted specifically with haem and hence was designated HbpS (haem-binding protein of ). (iii) HbpS contained three histidine residues surrounded by hydrophobic amino acids; one of them was located within the motif LXTHLXAA, which is related to the motif within the yeast cytochrome peroxidase LXTHLXAA whose histidine residue interacts with haem. (iv) The addition of haemin (Fe oxidized form of haem) to the cultures led to enhanced levels of HbpS which correlated with increased haemin-resistance. (v) The presence of HbpS increased synthesis of the highly active catalase-peroxidase CpeB containing haem. In this process HbpS could act as a chaperone that binds haem and then delivers it to the mycelium-associated CpeB; HbpS could also interact with membrane-associated proteins involved in a signal transduction cascade regulating the expression of . (vi) HbpS shared varying degrees of amino acid identities with bacterial proteins of so far unknown function. This report contributes to the elucidation of the biological function of these proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27091-0
2004-08-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502575.html?itemId=/content/journal/micro/10.1099/mic.0.27091-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Baker H. M., Anderson B. F., Baker E. N. 2003; Dealing with iron: common structural principles in proteins that transport iron and heme. Proc Natl Acad Sci U S A 100:3579–3583 [CrossRef]
    [Google Scholar]
  3. Bateman A., Birney E., Cerruti L.7 other authors 2002; The Pfam protein families database. Nucleic Acids Res 30:276–280 [CrossRef]
    [Google Scholar]
  4. Berks B. C., Sargent F., Palmer T. 2000; The Tat protein export pathway. Mol Microbiol 35:260–274 [CrossRef]
    [Google Scholar]
  5. Blake M. S., Johnston K. H., Russel-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136:175–179 [CrossRef]
    [Google Scholar]
  6. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317 [CrossRef]
    [Google Scholar]
  7. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. 1998; An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006 [CrossRef]
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  9. Braun V., Braun M. 2002; Iron transport and signaling in Escherichia coli. FEBS Lett 529:78–85 [CrossRef]
    [Google Scholar]
  10. Brink S., Bogsch E. G., Edwards W. R., Hynds P. J., Robinson C. 1998; Targeting of thylakoid proteins by the ΔpH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434:425–430 [CrossRef]
    [Google Scholar]
  11. Cartron M. L., Roldan M. D., Ferguson S. J., Berks B. C., Richardson D. J. 2002; Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochem J 368:425–432 [CrossRef]
    [Google Scholar]
  12. Conyers S. M., Kidwell D. A. 1991; Chromogenic substrates for horseradish peroxidase. Anal Biochem 192:207–211 [CrossRef]
    [Google Scholar]
  13. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  14. Enggist E., Schneider M. J., Schulz H., Thony-Meyer L. 2003; Biochemical and mutational characterization of the heme chaperone CcmE reveals a heme binding site. J Bacteriol 185:175–183 [CrossRef]
    [Google Scholar]
  15. Finzel B. C., Poulos T. L., Kraut J. 1984; Crystal structure of yeast cytochrome c peroxidase refined at 1·7-Å resolution. J Biol Chem 259:13027–13036
    [Google Scholar]
  16. Fridovich I. 1986; Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11 [CrossRef]
    [Google Scholar]
  17. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. 1981; Translational initiation in prokaryotes. Annu Rev Microbiol 35:365–403 [CrossRef]
    [Google Scholar]
  18. Grimm A. C., Harwood C. S. 1999; NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316
    [Google Scholar]
  19. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  20. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
  21. Howe G., Merchant S. 1994; Role of heme in the biosynthesis of cytochrome c6. J Biol Chem 269:5824–5832
    [Google Scholar]
  22. Johansson P., Hederstedt L. 1999; Organization of genes for tetrapyrrole biosynthesis in Gram-positive bacteria. Microbiology 145:529–538 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Moore R. W., Welton A. F., Aust S. D. 1978; Detection of hemoproteins in SDS-polyacrylamide gels. Methods Enzymol 52:324–331
    [Google Scholar]
  25. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  26. Ortiz de Orué Lucana D., Schrempf H. 2000; The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues. Mol Gen Genet 264:341–353 [CrossRef]
    [Google Scholar]
  27. Ortiz de Orué Lucana D., Troller M., Schrempf H. 2003; Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol Genet Genomics 268:618–627
    [Google Scholar]
  28. Panek H., O'Brian M. R. 2002; A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  30. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. 1998; Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650 [CrossRef]
    [Google Scholar]
  31. Schaerlaekens K., Schierova M., Lammertyn E., Geukens N., van Mellaert L., Anné J. 2001; Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183:6727–6732 [CrossRef]
    [Google Scholar]
  32. Schaerlaekens K., van Mellaert L., Lammertyn E., Geukens N., Anné J. 2004; The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–31 [CrossRef]
    [Google Scholar]
  33. Schlochtermeier A., Niemeyer F., Schrempf H. 1992a; Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microbiol 58:3240–3248
    [Google Scholar]
  34. Schlochtermeier A., Walter S., Moorman M., Schrempf H., Schröder J. 1992b; The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol 6:3611–3621 [CrossRef]
    [Google Scholar]
  35. Shin W. S., Yamashita H., Hirose M. 1994; Multiple effects of haemin binding on protease susceptibility of bovine serum albumin and a novel isolation procedure for its large fragment. Biochem J 304:81–86
    [Google Scholar]
  36. Smalley J. W., Charalabous P., Birss A. J., Hart C. A. 2001; Detection of heme-binding proteins in epidemic strains of Burkholderia cepacia. Clin Diagn Lab Immunol 8:509–514
    [Google Scholar]
  37. Stojiljkovic I., Evavold B. D., Kumar V. 2001; Antimicrobial properties of porphyrins. Expert Opin Investig Drugs 10:309–320 [CrossRef]
    [Google Scholar]
  38. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  39. Taketani S., Adachi Y., Kohno H., Ikehara S., Tokunaga R., Ishii T. 1998; Molecular characterization of a newly identified heme-binding protein induced during differentiation of urine erythroleukemia cells. J Biol Chem 273:31388–31394 [CrossRef]
    [Google Scholar]
  40. Thony-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  41. Vara J., Lewandowska-Skarbek M., Wang Y.-G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea(Streptomyces erythreus). J Bacteriol 171:5872–5881
    [Google Scholar]
  42. Villarejo M. R., Zamenhof P. J., Zabin I. 1972; β-Galactosidase.In vivo α-complementation. J Biol Chem 247:2212–2216
    [Google Scholar]
  43. Woloszczuk W., Sprinson D. B., Ruis H. 1980; The relation of heme to catalase apoprotein synthesis in yeast. J Biol Chem 255:2624–2627
    [Google Scholar]
  44. Wood D. W., Setubal J. C., Kaul R. & 48 other authors; 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323 [CrossRef]
    [Google Scholar]
  45. Yrjala K., Paulin L., Romantschuk M. 1997; Novel organization of catechol meta-pathway genes in Sphingomonassp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408 [CrossRef]
    [Google Scholar]
  46. Zou P., Schrempf H. 2000; The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur J Biochem 267:2840–2849 [CrossRef]
    [Google Scholar]
  47. Zou P., Borovok I., Ortiz de Orué Lucana D., Müller D., Schrempf H. 1999; The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145:549–559 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.27091-0
Loading
/content/journal/micro/10.1099/mic.0.27091-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error