1887

Abstract

Four extracellular enzymes of the thermophilic bacterium are involved in the depolymerization of de-esterified arabinoxylan: Xyn11A, Xyn10C, Bxl3B, and Arf51B. They were identified in a collection of eight clones producing enzymes hydrolysing xylan (, , ), -xyloside (, , ) and -arabinofuranoside (, ). The modular enzymes Xyn11A and Xyn10C represent the major xylanases in the culture supernatant of . Both hydrolyse arabinoxylan in an endo-type mode, but differ in the pattern of the oligosaccharides produced. Of the glycosidases, Bxl3B degrades xylobiose and xylooligosaccharides to xylose, and Arf51B is able to release arabinose residues from de-esterified arabinoxylan and from the oligosaccharides generated. The other glycosidases either did not attack or only marginally attacked these oligosaccharides. Significantly more xylanase and xylosidase activity was produced during growth on xylose and xylan. This is believed to be the first time that, in a single thermophilic micro-organism, the complete set of enzymes (as well as the respective genes) to completely hydrolyse de-esterified arabinoxylan to its monomeric sugar constituents, xylose and arabinose, has been identified and the enzymes produced . The active enzyme system was reconstituted from recombinant enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27066-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502257.html?itemId=/content/journal/micro/10.1099/mic.0.27066-0&mimeType=html&fmt=ahah

References

  1. Ali M. K., Fukumura M., Sakano K., Karita S., Kimura T., Sakka K., Ohmiya K. 1999; Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci Biotechnol Biochem 63:1596–1604 [CrossRef]
    [Google Scholar]
  2. Ali M. K., Kimura T., Sakka K., Ohmiya K. 2001; The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol Lett 198:79–83 [CrossRef]
    [Google Scholar]
  3. Beg Q. K., Kapoor M., Mahajan L., Hoondal G. S. 2001; Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338 [CrossRef]
    [Google Scholar]
  4. Berenger J. F., Frixon C., Bigliardi J., Creuzet N. 1985; Production, purification, and properties of thermostable xylanase from Clostridium stercorarium. Can J Microbiol 31:635–643 [CrossRef]
    [Google Scholar]
  5. Bronnenmeier K., Ebenbichler C., Staudenbauer W. L. 1990; Separation of the cellulolytic and xylanolytic enzymes of Clostridium stercorarium. J Chromatogr 521:301–310 [CrossRef]
    [Google Scholar]
  6. Bronnenmeier K., Meissner H., Stocker S., Staudenbauer W. L. 1995; α-d-Glucuronidases from the xylanolytic thermophiles Clostridium stercorarium and Thermoanaerobium saccharolyticum. Microbiology 141:2033–2040 [CrossRef]
    [Google Scholar]
  7. Bronnenmeier K., Adelsberger H., Lottspeich F., Staudenbauer W. L. 1996; Affinity purification of cellulose-binding enzymes from Clostridium stercorarium. Bioseparation 6:41–45
    [Google Scholar]
  8. Coutinho P. M., Henrissat B. 1999a; The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation pp. 15–23Edited by Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T. and Tokyo: Uni Publishers;
    [Google Scholar]
  9. Coutinho P. M., Henrissat B. 1999b; Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering pp. 3–12Edited by Gilbert H. J., Davies G., Henrissat B., Svensson B. and Cambridge: The Royal Society of Chemistry;
    [Google Scholar]
  10. de Vries R. P., Kester H. C., Poulsen C. H., Benen J. A., Visser J. 2000; Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410 [CrossRef]
    [Google Scholar]
  11. Donaghy J. A., Bronnenmeier K., Soto-Kelly P. F., McKay A. M. 2000; Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J Appl Microbiol 88:458–466 [CrossRef]
    [Google Scholar]
  12. Fernandes A. C., Fontes C. M., Gilbert H. J., Hazlewood G. P., Fernandes T. H., Ferreira L. M. 1999; Homologous xylanases from Clostridium thermocellum: evidence for bifunctional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem J 342:105–110 [CrossRef]
    [Google Scholar]
  13. Fuchs K. P., Zverlov V. Z., Velikodvorskaya G. A., Lottspeich F., Schwarz W. H. 2003; Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1,3-glucanase bound to the outer cell surface. Microbiol 149:1021–1031 [CrossRef]
    [Google Scholar]
  14. Fukumura M., Sakka K., Shimada K., Ohmiya K. 1995; Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci Biotechnol Biochem 59:40–46 [CrossRef]
    [Google Scholar]
  15. Hövel K., Shallom D., Niefind K., Belakhov V., Shoham G., Baasov T., Shoham Y., Schomburg D. 2003; Crystal structure and snapshots along the reaction pathway of a family 51 α-l-arabinofuranosidase. EMBO J 22:4922–4932 [CrossRef]
    [Google Scholar]
  16. Huang L., Forsberg C. W., Thomas D. Y. 1988; Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. J Bacteriol 170:2923–2932
    [Google Scholar]
  17. Izydorczyk M. S., Biliaderis C. G. 1995; Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48 [CrossRef]
    [Google Scholar]
  18. Johnson E. A., Bouchot F., Demain A. L. 1982; Regulation of cellulase formation in Clostridium thermocellum. J Gen Microbiol 131:2303–2308
    [Google Scholar]
  19. Kormelink F. J. M., Gruppen H., Voragen A. G. J. 1993a; Mode of action of (1→4)-β-d-arabinoxylan arabinofuranohydrolase (axh) and α-l-arabinofuranosidases on alkali-extractable wheat-flour arabinoxylan. Carbohydr Res 249:345–353 [CrossRef]
    [Google Scholar]
  20. Kormelink F. J. M., Voragen A. G. J. 1993b; Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695
    [Google Scholar]
  21. Kosugi A., Murashima K., Doi R. H. 2002; Xylanase and acetyl xylan esterase activities of xynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402 [CrossRef]
    [Google Scholar]
  22. Kurose N., Kinoshita S., Yagyu J., Uchida M., Hanai S., Obayashi A. 1988; Improvement of ethanol production of thermophilic Clostridium sp. by mutation. J Ferment Technol 66:467–472 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  24. Madden R. H. 1983; Isolation and characterization of Clostridium stercorarium sp. nov. Int J Syst Bacteriol 33:837–840 [CrossRef]
    [Google Scholar]
  25. Maniatis T., Fritsch E., Sambrook J. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Nagy T., Emami K., Fontes C. M., Ferreira L. M., Humphrey D. R., Gilbert H. J. 2002; The membrane bound α-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O-methyl-d-glucuronoxylooligosaccharides but not 4-o-methyl-d-glucuronoxylan. J Bacteriol 184:4925–4929 [CrossRef]
    [Google Scholar]
  27. Sakka K., Yoshikawa K., Kojima Y., Karita S., Ohmiya K., Shimada K. 1993; Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with β-d-xylosidase and α-l-arabinofuranosidase activities, and properties of the translated product. Biosci Biotechnol Biochem 57:268–272 [CrossRef]
    [Google Scholar]
  28. Sakka K., Kojima Y., Kondo T., Karita S., Shimada K., Ohmiya K. 1994; Purification and characterization of xylanase A from Clostridium stercorarium F-9 and a recombinant Escherichia coli. Biosci Biotechnol Biochem 58:1496–1499 [CrossRef]
    [Google Scholar]
  29. Sakka K., Kimura T., Karita S., Ohmiya K. 1997; Characterization of cellulose-binding domains from Clostridium stercorarium xylanase XynA and their application as an affinity-tag for rapid purification of fusion proteins. Rec Res Dev Agric Biol Chem 1:243–248
    [Google Scholar]
  30. Schwarz W. H., Bronnenmeier K., Staudenbauer W. L., Gräbnitz F. 1987; Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal Biochem 164:72–77 [CrossRef]
    [Google Scholar]
  31. Schwarz W. H., Jauris S., Kouba M., Bronnenmeier K., Staudenbauer W. L. 1989; Cloning and expression of Clostridium stercorarium genes in Escherichia coli. Biotechnol Lett 11:461–466 [CrossRef]
    [Google Scholar]
  32. Schwarz W. H., Adelsberger H., Jauris S., Hertel C., Funk B., Staudenbauer W. L. 1990; Xylan degradation by the thermophile Clostridium stercorarium: cloning and expression of xylanase, β-d-xylosidase, and α-l-arabinofuranosidase genes in Escherichia coli. Biochem Biophys Res Commun 170:368–374 [CrossRef]
    [Google Scholar]
  33. Schwarz W. H., Bronnenmeier K., Landmann B., Wanner G., Staudenbauer W. L., Kurose N., Takayama T. 1995a; Molecular characterization of four strains of the cellulolytic thermophile Clostridium stercorarium. Biosci Biotechnol Biochem 9:1661–1665
    [Google Scholar]
  34. Schwarz W. H., Bronnenmeier K., Krause B., Lottspeich F., Staudenbauer W. L. 1995b; Debranching of arabinoxylan: properties of the thermoactive recombinant α-l-arabinofuranosidase from Clostridium stercorarium. Appl Microbiol Biotechnol 43:856–860 [CrossRef]
    [Google Scholar]
  35. Schwarz W. H., Zverlov V.V., Bahl H. 2004; Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol (in press)
    [Google Scholar]
  36. Sedmak J. J., Grossberg S. E. 1977; A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552 [CrossRef]
    [Google Scholar]
  37. Shallom D., Shoham Y. 2003; Microbial hemicellulases. Curr Opin Microbiol 6:219–228 [CrossRef]
    [Google Scholar]
  38. Sorensen H. R., Meyer A. S., Pedersen S. 2003; Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-l-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnol Bioeng 81:726–731 [CrossRef]
    [Google Scholar]
  39. Suh J. H., Cho S. G., Choi Y. J. 1996a; Synergistic effects among endo-xylanase, β-xylosidase, and α-l-arabinofuranosidase from Bacillus stearothermophilus. J Microbiol Biotechnol 6:179–183
    [Google Scholar]
  40. Suh J. H., Choi Y. J. 1996b; Synergism among endo-xylanase, β-xylosidase and acetyl xylan esterase from Bacillus stearothermophilus. J Microbiol Biotechnol 6:173–178
    [Google Scholar]
  41. Sun J. L., Sakka K., Karita S., Kimura T., Ohmiya K. 1998; Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and importance of the CBDs to xylan hydrolysis. J Ferment Bioeng 85:63–68 [CrossRef]
    [Google Scholar]
  42. Utt E. A., Eddy K., Keshav K. F., Ingram L. O. 1991; Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-d-xylosidase and α-l-arabinofuranosidase activities. Appl Environ Microbiol 57:1227–1234
    [Google Scholar]
  43. Wood T. M. 1988; Preparation of crystalline, amorphous and dyed cellulose substrates. Methods Enzymol 160:19–25
    [Google Scholar]
  44. Wood T. M., Bhat K. M. 1988; Methods for measuring cellulase activities. Methods Enzymol 160:87–112
    [Google Scholar]
  45. Zverlov V. V., Liebl W., Bachleitner M., Schwarz W. H. 1998; Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of α-l-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol Lett 164:337–343
    [Google Scholar]
  46. Zverlov V. V., Velikodvorskaya G. A., Schwarz W. H. 2003; Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149:515–524 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27066-0
Loading
/content/journal/micro/10.1099/mic.0.27066-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error