1887

Abstract

After optimizing the conditions, including nutrients and temperature, swarming of 3610 was obtained on a synthetic, fully defined medium. The swarms formed highly branched (dendritic) patterns, generated by successive waves of moving cells. A detailed microscopic analysis of swarms 1 and 2 revealed varied cell morphologies and a remarkable series of events, with cells assembling into different ‘structures’, as the architecture of the swarm developed. Long filamentous cells begin to form before the onset of the first swarming (11 h) and are again observed at later stages in the interior of individual mature dendrites. Swarm 2, detected at 18–22 h, is accompanied by the rapid movement of a wave of dispersed (non-filamentous) cells. Subsequently at the forward edge of this swarm, individual cells begin to cluster together, gradually forming the shape of a dendrite tip with progressive lengthening of this new structure ‘backwards' towards the swarm centre. In both swarms 1 and 2, after the initial clustering of cells, there is the progressive appearance of a spreading monolayer of rafts (4–5 non-filamented cells, neatly aligned). The alternative possible roles of the rafts in the development of the swarm are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27061-0
2004-06-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501839.html?itemId=/content/journal/micro/10.1099/mic.0.27061-0&mimeType=html&fmt=ahah

References

  1. Antelmann H., Engelmann S., Schmid R., Sorokin A., Lapidus A., Hecker M. 1997; Expression of stress- and starvation-induced dps/pexB homologous gene is controlled by alternative sigma factor σB in Bacillus subtilis. J Bacteriol 179:7251–7256
    [Google Scholar]
  2. Bees M. A., Andresen P., Mosekilde E., Givskov M. 2000; The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens. J Math Biol 40:27–63 [CrossRef]
    [Google Scholar]
  3. Belas R. 1997; Proteus mirabilis and other swarming bacteria. In Bacteria as Multicellular Organisms pp. 183–219 Edited by Shapiro J., Dwarkin M. New York: Oxford University Press;
  4. Ben-Jacob E., Schochet O., Tenenbaum A., Cohen I., Czirok A., Vicsek T. 1994; Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368:46–49 [CrossRef]
    [Google Scholar]
  5. Branda S. S., Gonzalez-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R. 2001; Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626 [CrossRef]
    [Google Scholar]
  6. Dixit M., Murudkar C. S., Rao K. K. 2002; Epr is transcribed from a final σD promoter and is involved in swarming of Bacillus subtilis. J Bacteriol 184:596–599 [CrossRef]
    [Google Scholar]
  7. Gygi D., Rahman M. M., Lai H. C., Carlson R., Guard-Petter J., Hughes C. 1995; A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17:1167–1175 [CrossRef]
    [Google Scholar]
  8. Harshey R. M. 1994; Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13:389–394 [CrossRef]
    [Google Scholar]
  9. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635 [CrossRef]
    [Google Scholar]
  10. Kearns D. B., Losick R. 2003; Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590
    [Google Scholar]
  11. Kinsinger R. F., Shirk M. C., Fall R. 2003; Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631 [CrossRef]
    [Google Scholar]
  12. Kohler T., Curty L. K., Barja F., van Delden C., Pechere J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [CrossRef]
    [Google Scholar]
  13. Matsushita M. 1997; Formation of colony patterns by a bacterial cell population. In Bacteria as Multicellular Organisms pp. 367–393 Edited by Shapiro J., Dwarkin M. New York: Oxford University Press;
  14. Matsuyama T., Matsushita M. 1992; Self similar colony morphogenesis by Gram-negative rods as the experimental model of fractal growth by cell population. Appl Environ Microbiol 58:1227–1232
    [Google Scholar]
  15. Matsuyama T., Matsushita M. 2001; Population morphogenesis by cooperative bacteria. Forma 16:307–326
    [Google Scholar]
  16. Matsuyama T., Sogawa M., Nakagawa Y. 1989; Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 52:243–246
    [Google Scholar]
  17. Mendelson N. H., Salhi B. 1996; Patterns of reporter gene expression in the phase diagram of Bacillus subtilis colony forms. J Bacteriol 178:1980–1989
    [Google Scholar]
  18. Nakano M. M., Marahiel M. A., Zuber P. 1988; Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668
    [Google Scholar]
  19. Nakano M. M., Corbell N., Besson J., Zuber P. 1992; Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321
    [Google Scholar]
  20. Ohgiwari M., Matsushita M., Matsuyama T. 1992; Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61:816–822 [CrossRef]
    [Google Scholar]
  21. Rauprich O., Matsushita M., Weijer C. J., Siegert F., Esipov S. E., Shapiro J. A. 1996; Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525–6538
    [Google Scholar]
  22. Rudner R., Martsinkevich O., Leung W., Jarvis E. D. 1998; Classification and genetic characterization of pattern-forming Bacilli. Mol Microbiol 27:687–703 [CrossRef]
    [Google Scholar]
  23. Shapiro J. A. 1995; The significances of bacterial colony patterns. Bioessays 17:597–607 [CrossRef]
    [Google Scholar]
  24. Solomon J. M., Grossman A. D. 1996; Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–155 [CrossRef]
    [Google Scholar]
  25. Solomon J. M., Magnuson R., Srivastava A., Grossman A. D. 1995; Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 9:547–558 [CrossRef]
    [Google Scholar]
  26. Velicer G. J., Kroos L., Lenski R. E. 1998; Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci U S A 95:12376–12380 [CrossRef]
    [Google Scholar]
  27. Vicsek T. 1992 Fractal Growth Phenomena, 2nd edn. Singapore: World Scientific;
    [Google Scholar]
  28. Wakita J., Rafols I., Itoh H., Matsuyama T., Matsushita M. 1998; Experimental investigation on the formation of dense-branching-morphology-like colonies in bacteria. J Phys Soc Jpn 67:3630–3636 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27061-0
Loading
/content/journal/micro/10.1099/mic.0.27061-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error