1887

Abstract

, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medium. A proportion of the enzyme activity remained in the extracellular glucan sheath. AP was also the only type of proteinase activity in fluid obtained from -infected tissue of apple, pepper, tomato and zucchini. Five genes encoding an AP were cloned and denoted . Features of the encoded proteins are discussed. BcAP1, especially, has novel characteristics. A phylogenetic analysis was performed comprising sequences originating from different kingdoms. BcAP1 and BcAP5 did not cluster in a bootstrap-supported clade. BcAP2 clusters with vacuolar APs. BcAP3 and BcAP4 cluster with secreted APs in a clade that also contains glycosylphosphatidylinositol-anchored proteinases from and . All five genes are expressed in liquid cultures. Transcript levels of , , and are subject to glucose and peptone repression. Transcripts from all five genes were detected in infected plant tissue, indicating that at least part of the AP activity originates from the pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27058-0
2004-07-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502475.html?itemId=/content/journal/micro/10.1099/mic.0.27058-0&mimeType=html&fmt=ahah

References

  1. Abbas C. A., Groves S., Gander J. E.. 1989; Isolation, purification, and properties of Penicillium charlesii alkaline protease. J Bacteriol171:5630–5637
    [Google Scholar]
  2. Ahman J., Johansson T., Olsson M., Punt P. J., van den Hondel C. A., Tunlid A.. 2002; Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol68:3408–3415[CrossRef]
    [Google Scholar]
  3. Albersheim P., Darvill A., O'Neill M. A., Schols H. A., Voragen A. G. J.. 1996; An hypothesis: the same six polysaccharides are components of all higher plants. In Pectins and Pectinases pp47–55Edited by Visser J., Voragen A. G. J.. Amsterdam: Elsevier;
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J, Schäffer A. A.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  5. Ash J., Dominguez M., Bergeron J. J.-M., Thomas D. Y., Bourbonnais Y.. 1995; The yeast proprotein convertase encoded by yap3 is a glycophosphatidylinositol-anchored protein that localizes to the plasma membrane. J Biol Chem270:20847–20854[CrossRef]
    [Google Scholar]
  6. Bang M. L., Villadsen I., Sandal T.. 1999; Cloning and characterization of an endo-beta-1,3(4)glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Appl Microbiol Biotechnol51:215–222[CrossRef]
    [Google Scholar]
  7. Barkholt V.. 1987; Amino acid sequence of endothiapepsin. Complete primary structure of the aspartic protease from Endothia parasitica. Eur J Biochem167:327–338[CrossRef]
    [Google Scholar]
  8. Benito E. P., ten Have A., van't Klooster J. W., van Kan J. A. L.. 1998; Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. Eur J Plant Pathol104:207–220[CrossRef]
    [Google Scholar]
  9. Berka R. M., Ward M., Wilson L. J., Hayenga K. J., Kodama K. H., Carlomagno L. P., Thompson S. A.. 1990; Molecular-cloning and deletion of the gene encoding aspergillopepsin-A from Aspergillus awamori. Gene86:153–162[CrossRef]
    [Google Scholar]
  10. Blundell T. L., Guruprasad K., Albert A., Williams M., Sibanda B. L., Dhanaraj V.. 1998; The aspartic proteinases. An historical overview. Adv Exp Med Biol436:1–13
    [Google Scholar]
  11. Burnett W. V.. 1997; Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques22:668–671
    [Google Scholar]
  12. Capasso C., Riggio M., Scudiero R., Carginale V., di Prisco G., Kay J., Kille P., Parisi E.. 1998; Molecular cloning and sequence determination of a novel aspartic proteinase from Antarctic fish. Biochim Biophys Acta1387:457–461[CrossRef]
    [Google Scholar]
  13. Cawley N. X., Wong M., Pu L. P., Tam W., Loh Y. P.. 1995; Secretion of yeast aspartic protease 3 is regulated by its carboxy-terminal tail: characterization of secreted YAP3p. Biochemistry34:7430–7437[CrossRef]
    [Google Scholar]
  14. Chou H., Lai H. Y., Tam M. F., Chou M. Y., Wang S. R., Han S. H., Shen H. D.. 2002; cDNA cloning, biological and immunological characterization of the alkaline serine protease major allergen from Penicillium chrysogenum. Int Arch Allergy Immunol127:15–26[CrossRef]
    [Google Scholar]
  15. Clark S. J., Templeton M. D., Sullivan P. A.. 1997; A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA. Microbiology143:1395–1403[CrossRef]
    [Google Scholar]
  16. Cook M., Caswell R. C., Richards R. J., Kay J., Tatnell P. J.. 2001; Regulation of human and mouse procathepsin E gene expression. Eur J Biochem268:2658–2668[CrossRef]
    [Google Scholar]
  17. Cordeiro M. C., Xue Z. T., Pietrzak M., Pais M. S., Brodelius P. E.. 1994; Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Plant Mol Biol24:733–741[CrossRef]
    [Google Scholar]
  18. Cosgrove D. J.. 2000; Loosening of plant cell walls by expansins. Nature407:321–326[CrossRef]
    [Google Scholar]
  19. Dhondt K., Stack S., Gutteridge S., Vandekerckhove J., Krebbers E., Gal S.. 1997; Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Mol Biol33:187–192[CrossRef]
    [Google Scholar]
  20. Diaz J., ten Have A., van Kan J. A. L.. 2002; The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol129:1341–1351[CrossRef]
    [Google Scholar]
  21. Dik A. J., Koning G., Kohl J.. 1999; Evaluation of microbial anatagonists for biological control of Botrytis cinerea stem infection in cucumber and tomato. Eur J Plant Pathol105:115–122[CrossRef]
    [Google Scholar]
  22. Doss R. P.. 1999; Composition and enzymatic activity of the extracellular matrix secreted by germlings of Botrytis cinerea. Appl Environ Microbiol65:404–408
    [Google Scholar]
  23. Durand-Poussereau N., Fevre M.. 1996; Characterization of a protease deficient strain of Penicillium roqueforti generated by heterologous plasmid integration: potential use for protein production. J Biotechnol51:97–105[CrossRef]
    [Google Scholar]
  24. Eisenhaber B., Schneider G., Wildpaner M., Eisenhaber F.. 2004; A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. J Mol Biol337:243–253[CrossRef]
    [Google Scholar]
  25. Farley P. C., Sullivan P. A.. 1998; The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiology144:2355–2366[CrossRef]
    [Google Scholar]
  26. Fry S. C.. 1982; Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J204:449–455
    [Google Scholar]
  27. Galagan J. E., Calvo S. E., Borkovich K. A..74 other authors 2003; The genome sequence of the filamentous fungus Neurospora crassa. Nature422:859–868[CrossRef]
    [Google Scholar]
  28. Germeier C., Hedke K., Tiedemann A. V.. 1994; The use of pH-indicators in diagnostic media for acid-producing plant pathogens. Z Pflanzenkr Pflanzenschutz101:498–507
    [Google Scholar]
  29. Gil-ad N. L., Bar-Nun N., Mayer A. M.. 2001; The possible function of the glucan sheath of Botrytis cinerea: effects on the distribution of enzyme activities. FEMS Microbiol Lett199:109–113[CrossRef]
    [Google Scholar]
  30. Gomi K., Arikawa K., Kamiya N., Kitamoto K., Kumagai C.. 1993; Cloning and nucleotide-sequence of the acid protease-encoding gene (PEPA) from Aspergillus oryzae. Biosci Biotechnol Biochem57:1095–1100[CrossRef]
    [Google Scholar]
  31. Hamada K., Fukuchi S., Arisawa M., Baba M., Kitada K.. 1998; Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol Gen Genet258:53–59[CrossRef]
    [Google Scholar]
  32. Horiuchi H., Yanai K., Okazaki T., Takagi M., Yano K.. 1988; Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus. J Bacteriol170:272–278
    [Google Scholar]
  33. Hube B.. 1998; Possible role of secreted proteinases in Candida albicans infections. Rev Iberoam Micol15:65–68
    [Google Scholar]
  34. Hube B., Turver C. J., Odds F. C., Eiffert H., Boulnois G. J., Kochel H., Ruchel R.. 1991; Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol29:129–132[CrossRef]
    [Google Scholar]
  35. Huh W. K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., O'Shea E. K.. 2003; Global analysis of protein localization in budding yeast. Nature425:686–691[CrossRef]
    [Google Scholar]
  36. James M. N., Sielecki A. R.. 1983; Structure and refinement of penicillopepsin at 1·8 Å resolution. J Biol Chem163:299–361
    [Google Scholar]
  37. Jarai G., Kirchherr D., Buxton F.. 1994a; Cloning and characterization of the pepD gene of Aspergillus niger which codes for a subtilisin-like protease. Gene139:51–57[CrossRef]
    [Google Scholar]
  38. Jarai G., Van den Hombergh J. P., Buxton F. P.. 1994b; Cloning and characterization of the PEPE gene of Aspergillus niger encoding a new aspartic protease and regulation of PEPE and PEPC. Gene145:171–178[CrossRef]
    [Google Scholar]
  39. Jarvis W. R.. 1977; Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Monogr Res Branch Can Dept Agric15:
    [Google Scholar]
  40. Jaton-Ogay K., Paris S., Huerre M., Quadroni M., Falchetto R., Togni G., Latge J. P., Monod M.. 1994; Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol Microbiol14:917–928[CrossRef]
    [Google Scholar]
  41. Khan A. R., James M. N.. 1998; Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci7:815–836
    [Google Scholar]
  42. Kikuchi S., Satoh K., Nagata T. & 71 other authors. 2003; Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science301:376–379[CrossRef]
    [Google Scholar]
  43. Kobayashi H., Sekibata S., Shibuya H., Yoshida S., Kusakabe I., Murakami K.. 1989; Cloning and sequence-analysis of cDNA for Irpex lacteus aspartic proteinase. Agric Biol Chem53:1927–1933[CrossRef]
    [Google Scholar]
  44. Komano H., Fuller R. S.. 1995; Shared functions in vivo of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotein processing protease Kex2 in yeast. Proc Natl Acad Sci U S A92:10752–10756[CrossRef]
    [Google Scholar]
  45. Kunert J., Kopecek P.. 2000; Multiple forms of the serine protease Alp of Aspergillus fumigatus. Mycoses43:339–347[CrossRef]
    [Google Scholar]
  46. Kunihiro S., Kawanishi Y., Sano M..7 other authors 2002; A polymerase chain reaction-based method for cloning novel members of a gene family using a combination of degenerate and inhibitory primers. Gene289:177–184[CrossRef]
    [Google Scholar]
  47. Lu J. F., Inoue H., Kimura T., Makabe O., Takahashi K.. 1995; Molecular-cloning of a cDNA for proctase-B from Aspergillus niger var. macrosporas and sequence comparison with other aspergillopepsins I. Biosci Biotechnol Biochem59:954–955[CrossRef]
    [Google Scholar]
  48. Manteau S., Abouna S., Lambert B., Legendre L.. 2003; Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol43:359–366[CrossRef]
    [Google Scholar]
  49. Masih E. I., Paul B.. 2002; Secretion of beta-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microbiol44:391–395[CrossRef]
    [Google Scholar]
  50. McCann M. C., Roberts K.. 1991; Architecture of the primary cell wall. In The Cytoskeletal Basis of Plant Growth and Form pp109–129Edited by W C.. Lloyd. London: Academic Press;
    [Google Scholar]
  51. Monod M., Togni G., Rahalison L., Frenk E.. 1991; Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol35:23–28[CrossRef]
    [Google Scholar]
  52. Monod M., Paris S., Sanglard D., Jaton-Ogay K., Bille J., Latge J. P.. 1993; Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus. Infect Immun61:4099–4104
    [Google Scholar]
  53. Monod M., Togni G., Hube B., Sanglard D.. 1994; Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol13:357–368[CrossRef]
    [Google Scholar]
  54. Monod M., Hube B., Hess D., Sanglard D.. 1998; Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology144:2731–2737[CrossRef]
    [Google Scholar]
  55. Monod M., Capoccia S., Lechenne B., Zaugg C., Holdom M., Jousson O.. 2002; Secreted proteases from pathogenic fungi. Int J Med Microbiol292:405–419[CrossRef]
    [Google Scholar]
  56. Moutaouakil M., Monod M., Prevost M. C., Bouchara J. P., Paris S., Latge J. P.. 1993; Identification of the 33-kDa alkaline protease of Aspergillus fumigatus in vitro and in vivo. J Med Microbiol39:393–399[CrossRef]
    [Google Scholar]
  57. Movahedi S., Heale J. B.. 1990a; The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea. Pers ex. Pers. Physiol Mol Plant Pathol36:303–324[CrossRef]
    [Google Scholar]
  58. Movahedi S., Heale J. B.. 1990b; Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea pers ex. pers in culture and in infected carrots. Physiol Mol Plant Pathol36:289–302[CrossRef]
    [Google Scholar]
  59. Murphy J. M., Walton J. D.. 1996; Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption. Mol Plant–Microbe Interact9:290–297[CrossRef]
    [Google Scholar]
  60. Nehls U., Bock A., Einig W., Hampp R.. 2001; Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ24:741–747[CrossRef]
    [Google Scholar]
  61. Nielsen H., Engebrecht J., Brunak S., von Heijne G.. 1997a; A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst8:581–599[CrossRef]
    [Google Scholar]
  62. Nielsen H., Engebrecht J., Brunak S., von Heijne G.. 1997b; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6[CrossRef]
    [Google Scholar]
  63. Olsen V., Cawley N. X., Brandt J., Egel-Mitani M., Loh Y. P.. 1999; Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene. Biochem J339:407–411[CrossRef]
    [Google Scholar]
  64. Paoletti M., Clave C., Begueret J.. 1998; Characterization of a gene from the filamentous fungus Podospora anserina encoding an aspartyl protease induced upon carbon starvation. Gene210:45–52[CrossRef]
    [Google Scholar]
  65. Paris R., Lamattina L.. 1999; Phytophthora infestans secretes extracellular proteases with necrosis inducing activity on potato. Eur J Plant Pathol105:753–760[CrossRef]
    [Google Scholar]
  66. Poussereau N., Creton S., Billon-Grand G., Rascle C., Fevre M.. 2001a; Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology147:717–726
    [Google Scholar]
  67. Poussereau N., Gente S., Rascle C., Billon-Grand G., Fevre M.. 2001b; aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol Lett194:27–32[CrossRef]
    [Google Scholar]
  68. Prins T.. 2001; Identification and functional analysis of Botrytis cinerea genes induced during infection of tomato. PhD thesis Wageningen University; Wageningen, The Netherlands:
    [Google Scholar]
  69. Prins T. W., Tudzynski P., von Tiedemann A., Tudzynski B., ten Have A., Hansen M. E., Tenberge K., van Kan J. A. L.. 2000; Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In Fungal Pathology pp33–64Edited by Kronstad J. W.. Dordrecht: Kluwer Academic;
    [Google Scholar]
  70. Prusky D., Yakoby N.. 2003; Pathogenic fungi: leading or led by ambient pH?. Mol Plant Pathol4:509–516[CrossRef]
    [Google Scholar]
  71. Reichard U., Monod M., Ruchel R.. 1995; Molecular-cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus. FEMS Microbiol Lett130:69–74
    [Google Scholar]
  72. Reichard U., Cole G. T., Ruchel R., Monod M.. 2000; Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus. Int J Med Microbiol290:85–96[CrossRef]
    [Google Scholar]
  73. Rolke Y., Liu S., Quidde T., Williamson B., Schouten A., Weltring K.-M., Siewers V., Tudzynski B., Tudzynski P.. 2004; Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol5:17–28[CrossRef]
    [Google Scholar]
  74. Rollins J. A., Dickman M. B.. 1998; Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl Environ Microbiol64:2539–2544
    [Google Scholar]
  75. Schaller A., Ryan C. A.. 1996; Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol31:1073–1077[CrossRef]
    [Google Scholar]
  76. Schulze Gronover C., Kasulke D., Tudzynski P., Tudzynski B.. 2001; The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant–Microbe Interact14:1293–1302[CrossRef]
    [Google Scholar]
  77. Shintani T., Ichishima E.. 1994; Primary structure of aspergillopepsin-I deduced from nucleotide-sequence of the gene and aspartic acid-76 is an essential active-site of the enzyme for trypsinogen activation. Biochim Biophys Acta1204:257–264[CrossRef]
    [Google Scholar]
  78. St Leger R. J., Joshi L., Roberts D.. 1998; Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hybrophobin by Metarhizium anisopliae. Appl Environ Microbiol64:709–713
    [Google Scholar]
  79. Stahmann K. P., Monschau N., Sahm H., Koschel A., Gawronski M., Conrad H., Springer T., Kopp F.. 1995; Structural properties of native and sonicated cinerean, a beta-(1→3)(1→6)-d-glucan produced by Botrytis cinerea. Carbohydr Res266:115–128[CrossRef]
    [Google Scholar]
  80. Swofford D. L., Waddell P. J., Huelsenbeck J. P., Foster P. G., Lewis P. O., Rogers J. S.. 2001; Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol50:525–539[CrossRef]
    [Google Scholar]
  81. Tang J.. 1979; Evolution in the structure and function of carboxyl proteases. Mol Cell Biochem26:93–109
    [Google Scholar]
  82. Tatnell P. J., Cook M., Peters C., Kay J.. 2000; Molecular organization, expression and chromosomal localization of the mouse pronapsin gene. Eur J Biochem267:6921–6930[CrossRef]
    [Google Scholar]
  83. ten Have A., Woltering E. J.. 1997; Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol34:89–97[CrossRef]
    [Google Scholar]
  84. ten Have A., Mulder W., Visser J., van Kan J. A. L.. 1998; The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant–Microbe Interact11:1009–1016[CrossRef]
    [Google Scholar]
  85. ten Have A., Breuil W. O., Wubben J. P., Visser J., van Kan J. A.. 2001; Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol33:97–105[CrossRef]
    [Google Scholar]
  86. ten Have A., Tenberge K. B., Benen J. A. E., Tudzynski P., Visser J., van Kan J. A. L.. 2002; The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In The MycotaVol. XI pp341–358Edited by Kempken F.. Berlin: Springer;
    [Google Scholar]
  87. Tsukagoshi N., Ando Y., Tomita Y. & 7 other authors. 1988; Nucleotide sequence and expression in Escherichia coli of cDNA of swine pepsinogen: involvement of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene65:285–292[CrossRef]
    [Google Scholar]
  88. Tudzynski B., Liu S., Kelly J. M.. 2000; Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. FEMS Microbiol Lett184:9–15[CrossRef]
    [Google Scholar]
  89. Valler M. J., Kay J., Aoyagi T., Dunn B. M.. 1985; Interaction of aspartic proteinases with naturally-occurring inhibitors from actinomycetes and Ascaris lumbricoides. J Enzyme Inhib1:77–82[CrossRef]
    [Google Scholar]
  90. van den Hombergh J. P., Jarai G., Buxton F. P., Visser J.. 1994; Cloning, characterization and expression of pepF, a gene encoding a serine carboxypeptidase from Aspergillus niger. Gene151:73–79[CrossRef]
    [Google Scholar]
  91. van der Vlugt-Bergmans C. J. B., Wagemakers C. A. M., van Kan J. A. L.. 1997; Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant–Microbe Interact10:21–29[CrossRef]
    [Google Scholar]
  92. van Kan J. A. L., van't Klooster J. W., Wagemakers C. A. M., Dees D. C. T., van der Vlugt-Bergmans C. J. B.. 1997; Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant–Microbe Interact10:30–38[CrossRef]
    [Google Scholar]
  93. VasquezLaslop N., Tenney K., Bowman B. J.. 1996; Characterization of a vacuolar protease in Neurospora crassa and the use of gene RIPing to generate protease-deficient strains. J Biol Chem271:21944–21949[CrossRef]
    [Google Scholar]
  94. Vassar R.. 2001; The beta-secretase, BACE: a prime drug target for Alzheimer's disease. J Mol Neurosci17:157–170[CrossRef]
    [Google Scholar]
  95. Verhoeff K., Leeman M., van Peer R., Posthuma L., Schot N., van Eijk G. W.. 1988; Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol122:327–333[CrossRef]
    [Google Scholar]
  96. White P. C., Cordeiro M. C., Arnold D., Brodelius P. E., Kay J.. 1999; Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus. J Biol Chem274:16685–16693[CrossRef]
    [Google Scholar]
  97. Winther J. R., Phylip L. H., Kay J.. 1998; Saccharopepsin. In Handbook of Proteolytic Enzymes pp848–850Edited by Barrett A. J., Rawlings N. D., Woessner J. F.. New York: Academic Press;
    [Google Scholar]
  98. Woolford C. A., Daniels L. B., Park F. J., Jones E. W., Van Arsdell J. N., Innis M. A.. 1986; The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol6:2500–2510
    [Google Scholar]
  99. Wubben J. P., Mulder W., ten Have A., van Kan J. A. L., Visser J.. 1999; Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol65:1596–1602
    [Google Scholar]
  100. Wubben J. P., ten Have A., van Kan J. A., Visser J.. 2000; Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet37:152–157[CrossRef]
    [Google Scholar]
  101. Yakoby N., Kobiler I., Dinoor A., Prusky D.. 2000; pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl Environ Microbiol66:1026–1030[CrossRef]
    [Google Scholar]
  102. Yamauchi T., Nagahama M., Hori H., Murakami K.. 1988; Functional characterization of Asp-317 mutant of human renin expressed in COS cells. FEBS Lett230:205–208[CrossRef]
    [Google Scholar]
  103. Yan R., Bienkowski M. J., Shuck M. E..12 other authors 1999; Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature402:533–537[CrossRef]
    [Google Scholar]
  104. Zaugg C., Borg-von Zepelin M., Reichard U., Sanglard D., Monod M.. 2001; Secreted aspartic proteinase family of Candida tropicalis. Infect Immun69:405–412[CrossRef]
    [Google Scholar]
  105. Zhu W. S., Wojdyla K., Donlon K., Thomas P. A., Eberle H. I.. 1990; Extracellular proteases of Aspergillus flavus. Fungal keratitis, proteases, and pathogenesis. Diagn Microbiol Infect Dis13:491–497[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27058-0
Loading
/content/journal/micro/10.1099/mic.0.27058-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error