1887

Abstract

Inspection of the genomes of A3(2) and reveals that each contains 55 putative eukaryotic-type protein phosphatases (PPs), the largest number ever identified from any single prokaryotic organism. Unlike most other prokaryotic genomes that have only one or two superfamilies of eukaryotic-type PPs, the streptomycete genomes possess the eukaryotic-type PPs that belong to four superfamilies: 2 phosphoprotein phosphatases and 2 low-molecular-mass protein tyrosine phosphatases in each species, 49 Mg- or Mn-dependent protein phosphatases (PPMs) and 2 conventional protein tyrosine phosphatases (CPTPs) in A3(2), and 48 PPMs and 3 CPTPs in . Sixty-four percent of the PPs found in A3(2) have orthologues in , indicating that they originated from a common ancestor and might be involved in the regulation of more conserved metabolic activities. The genes of eukaryotic-type PP unique to each surveyed streptomycete genome are mainly located in two arms of the linear chromosomes and their evolution might be involved in gene acquisition or duplication to adapt to the extremely variable soil environments where these organisms live. In addition, 56 % of the PPs from A3(2) and 65 % of the PPs from possess at least one additional domain having a putative biological function. These include the domains involved in the detection of redox potential, the binding of cyclic nucleotides, mRNA, DNA and ATP, and the catalysis of phosphorylation reactions. Because they contained multiple functional domains, most of them were assigned functions other than PPs in previous annotations. Although few studies have been conducted on the physiological functions of the PPs in streptomycetes, the existence of large numbers of putative PPs in these two streptomycete genomes strongly suggests that eukaryotic-type PPs play important regulatory roles in primary or secondary metabolic pathways. The identification and analysis of such a large number of putative eukaryotic-type PPs from A3(2) and constitute a basis for further exploration of the signal transduction pathways mediated by these phosphatases in industrially important strains of streptomycetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27057-0
2004-07-01
2020-07-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502247.html?itemId=/content/journal/micro/10.1099/mic.0.27057-0&mimeType=html&fmt=ahah

References

  1. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M..40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147[CrossRef]
    [Google Scholar]
  2. Beuf L., Brown N. P., Hegyi H., Schultz J.. 1994; A protein involved in co-ordinated regulation of inorganic carbon and glucose metabolism in the facultative photoautotrophic cyanobacterium Synechocystis PCC 6803. Plant Mol Biol25:855–864[CrossRef]
    [Google Scholar]
  3. Bliska J. B., Guan K. L., Dixon J. E., Falkow S.. 1991; Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A88:1187–1191[CrossRef]
    [Google Scholar]
  4. Boitel B., Ortiz-Lombardia M., Duran R., Pompeo F., Cole S. T., Cervenansky C., Alzari P. M.. 2003; PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol49:1493–1508[CrossRef]
    [Google Scholar]
  5. Bork P., Brown N. P., Hegyi H., Schultz J.. 1996; The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci5:1421–1425[CrossRef]
    [Google Scholar]
  6. Bretz J. R., Mockm N. M., Charity J. C., Zeyad S., Baker C. J., Hutcheson S. W.. 2003; A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defense response to infection. Mol Microbiol49:389–400[CrossRef]
    [Google Scholar]
  7. Chater K. F.. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol47:683–713
    [Google Scholar]
  8. Cohen P.. 1989; The structure and regulation of protein phosphatases. Annu Rev Biochem58:453–508[CrossRef]
    [Google Scholar]
  9. Cohen P. T. W.. 1994; Nomenclature and chromosomal localization of human protein serine/threonine phosphatase genes. Adv Protein Phosphatases8:371–376
    [Google Scholar]
  10. Cohen P. T. W., Cohen P.. 1989; Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221. Biochem J260:931–934
    [Google Scholar]
  11. Cozzone A. J.. 1988; Protein phosphorylation in prokaryotes. Annu Rev Microbiol42:97–125[CrossRef]
    [Google Scholar]
  12. Duncan L., Alper S., Arigoni F., Losick R., Stragier P.. 1995; Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science270:641–644[CrossRef]
    [Google Scholar]
  13. Espinosa A., Guo M., Tam V. C., Fu Z. Q., Alfano J. R.. 2003; The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol49:377–387[CrossRef]
    [Google Scholar]
  14. Galyov E. E., Hakansson S., Forsberg A., Wolf-Watz H.. 1993; A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature361:730–732[CrossRef]
    [Google Scholar]
  15. Grangeasse C., Doublet P., Vincent C., Vaganay E., Riberty M., Duclos B., Cozzone A. J.. 1998; Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol278:339–347[CrossRef]
    [Google Scholar]
  16. Ho Y. S., Burden L. M., Hurley J. H.. 2000; Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J19:5288–5299[CrossRef]
    [Google Scholar]
  17. Hodgson D. A.. 2000; Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol42:47–238
    [Google Scholar]
  18. Hopwood D. A.. 1999; Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology145:2183–2202
    [Google Scholar]
  19. Horinouchi S.. 2003; AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol20:462–467
    [Google Scholar]
  20. Ikeda H., Ishikawa J., Hanamoto K.. & 7 other authors. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol21:526–531[CrossRef]
    [Google Scholar]
  21. Irmler A., Forchhammer K.. 2001; A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803. Proc Natl Acad Sci U S A98:12978–12983[CrossRef]
    [Google Scholar]
  22. Iwanicki A., Herman-Antosiewicz A., Pierchod M., Seror S. J., Obuchowski M.. 2002; PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity. Biochem J366:929–936
    [Google Scholar]
  23. Jackson M. D., Denu J. M.. 2001; Molecular reactions of protein phosphatases – insights from structure and chemistry. Chem Rev101:2313–2340[CrossRef]
    [Google Scholar]
  24. Kaniga K., Uralil J., Bliska J. B., Galan J. E.. 1996; A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol21:633–641[CrossRef]
    [Google Scholar]
  25. Kennelly P. J.. 2002; Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett206:1–8[CrossRef]
    [Google Scholar]
  26. Koul A., Choidas A., Treder M., Tyagi A. K., Drlica K., Singh Y., Ullrich A.. 2000; Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol182:5425–5432[CrossRef]
    [Google Scholar]
  27. Leng J., Cameron A. J. M., Buckel S., Kennelly P. J.. 1995; Isolation and cloning a protein-serine/threonine phosphatase from an archaeon. J Bacteriol177:6510–6517
    [Google Scholar]
  28. Li Y., Strohl W. R.. 1996; Cloning, purification, and properties of a phosphotyrosine protein phosphatase from Streptomyces coelicolor A3(2). J Bacteriol178:136–142
    [Google Scholar]
  29. Mai B., Frey G., Swanson R. V., Mathur E. J., Stetter K. O.. 1998; Molecular cloning and functional expression of a protein-serine/threonine phosphatase from the hyperthermophilic archaeon Pyrodictium abyssi TAG11. J Bacteriol180:4030–4035
    [Google Scholar]
  30. Marchler-Bauer A., Anderson J. B., DeWeese-Scott C.. & 24 other authors. 2003; CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res31:383–387[CrossRef]
    [Google Scholar]
  31. Missiakas D., Raina S.. 1997; Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli: role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J16:1670–1685[CrossRef]
    [Google Scholar]
  32. Mukhopadhyay S., Kapatral V., Xu W., Chakrabarty A. M.. 1999; Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa. J Bacteriol181:6615–6622
    [Google Scholar]
  33. Nádvorník R., Vomastek T., Janecek J., Branny P., Techniková Z.. 1999; Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J Bacteriol181:15–23
    [Google Scholar]
  34. Obuchowski M., Madec E., Delattre D., Boel G., Iwanicki A., Foulger D., Seror S. J.. 2000; Characterization of PrpC from Bacillus subtilis, a member of the PPM phosphatase family. J Bacteriol182:5634–5638[CrossRef]
    [Google Scholar]
  35. Petrickova K., Petricek M.. 2003; Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme. Microbiology149:1609–1621[CrossRef]
    [Google Scholar]
  36. Potts M., Sun H., Mockaitis K., Kennelly P. J., Reed D., Tonks N. K.. 1993; A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem268:7632–7635
    [Google Scholar]
  37. Preneta R., Jarraud S., Vincent C., Doublet P., Duclos B., Etienne J., Cozzone A. J.. 2002; Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B Biochem Mol Biol131:103–112[CrossRef]
    [Google Scholar]
  38. Rajagopal L., Clancy A., Ruhens C. E.. 2003; A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylates an inorganic pyrophosphatase and affects growth, cell segregation, and virulence. J Biol Chem278:14429–14441[CrossRef]
    [Google Scholar]
  39. Redenbach M., Ikeda K., Yamasaki M., Kinashi H.. 1998; Cloning and physical mapping of the EcoRI fragments of the giant linear plasmid SCP1. J Bacteriol180:2796–2799
    [Google Scholar]
  40. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  41. Shi L.. 2004; Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front Biosci9:1382–1397[CrossRef]
    [Google Scholar]
  42. Shi L., Carmichael W. W.. 1997; pp1-cyano2, a protein serine/threonine phosphatase 1 gene from the cyanobacterium Microcystis aeruginosa UTEX 2063. Arch Microbiol168:528–531[CrossRef]
    [Google Scholar]
  43. Shi L., Potts M., Kennelly P. J.. 1998; The serine threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev22:229–253[CrossRef]
    [Google Scholar]
  44. Shi L., Bischoff K. M., Kennelly P. J.. 1999a; The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. J Bacteriol181:4761–4767
    [Google Scholar]
  45. Shi L., Carmichael W. W., Kennelly P. J.. 1999b; Cyanobacterial PPP-family protein phosphatases possess multifunctional capabilities and are resistant to microcystin-LR. J Biol Chem274:10039–10046[CrossRef]
    [Google Scholar]
  46. Shi L., Kehres D. G., Maguire M. E.. 2001; The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. J Bacteriol183:7053–7057[CrossRef]
    [Google Scholar]
  47. Shu C. J., Zhulin I. B.. 2002; ANTAR: an RNA-binding domain in transcription antitermination regulatory proteins. Trends Biochem Sci27:3–5[CrossRef]
    [Google Scholar]
  48. Solow B., Young J. C., Kennelly P. J.. 1997; Gene cloning and expression and characterization of toxin-sensitive protein phosphatase from methanogenic archaeon Methanosarcina thermophila TM-1. J Bacteriol179:5072–5075
    [Google Scholar]
  49. Soulat D., Vaganay E., Duclos B., Genestier A. L., Etienne J., Cozzone A. J.. 2002; Staphylococcus aureus contains two low-molecular-mass phosphotyrosine protein phosphatases. J Bacteriol184:5194–5199[CrossRef]
    [Google Scholar]
  50. Stock A. M., Robinson V. L., Goudreau P. N.. 2000; Two-component signal transduction. Annu Rev Biochem69:183–215[CrossRef]
    [Google Scholar]
  51. Taylor B. L., Zhulin I. B.. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev63:479–506
    [Google Scholar]
  52. Treuner-Lange A., Ward M. J., Zusman D. R.. 2001; Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol Microbiol40:126–140[CrossRef]
    [Google Scholar]
  53. Ueda K., Miyake K., Horinouchi S., Beppu T.. 1993; A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J Bacteriol175:2006–2016
    [Google Scholar]
  54. Umeyama T., Tanabe Y., Aigle B. D., Horinouchi S.. 1996; Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol Lett144:177–184[CrossRef]
    [Google Scholar]
  55. Umeyama T., Naruka A., Horinouchi S.. 2000; Genetic and biochemical characterization of protein phosphatase with dual substrate specificity in Streptomyces coelicolor A3(2). . Gene258:55–62[CrossRef]
    [Google Scholar]
  56. Umeyama T., Lee P. C., Horinouchi S.. 2002; Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol59:419–425[CrossRef]
    [Google Scholar]
  57. Vijay K., Brody M. S., Fredlund E., Price C. W.. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol35:180–188[CrossRef]
    [Google Scholar]
  58. Vincent C., Doublet P., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B.. 1999; Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase. Wzb. J Bacteriol181:3472–3477
    [Google Scholar]
  59. Wang L., Sun Y.-P., Chen W.-L., Li J.-H., Zhang C. C.. 2002; Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett217:155–165[CrossRef]
    [Google Scholar]
  60. Wugeditsch T., Paiment A., Hocking J., Drummelsmith J., Forrester C., Whitfield C.. 2001; Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem276:2361–2371[CrossRef]
    [Google Scholar]
  61. Yang X., Kang C. M., Brody M. S., Price C. W.. 1996; Opposing pair of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev10:2265–2275[CrossRef]
    [Google Scholar]
  62. Zhang C. C., Friry A., Peng L.. 1998a; Molecular and genetic analysis of two closely linked genes that encode, respectively, a protein phosphatase1/2A/2B homolog and protein kinase homolog in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol180:2616–2622
    [Google Scholar]
  63. Zhang C. C., Gonzalez L., Phalip C.. 1998b; Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res26:3619–3625[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27057-0
Loading
/content/journal/micro/10.1099/mic.0.27057-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error