1887

Abstract

Members of the and are unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceae strain CE 2404 and strain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480–615 nm) at different light intensities (0·2–55·7 μmol photons m s), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates of under green light achieved a maximum of 0·06 h at light intensities exceeding 6 μmol photons m s, lower than the maximum observed under white light (approx. 0·1 h). The maximal growth rates of under green light were slightly higher (0·07 h) than observed for and were achieved at 3·5 and 4·3 μmol photons m s. LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChl homologues of to be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChl was maximal at 3–5 μmol photons m s [400±150 nmol BChl (mg protein)]. In the case of , the specific content of BChl was maximal at 4·3 μmol photons m s [115 nmol BChl (mg protein)], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChl forms were esterified with a range of isoprenoid and straight-chain alcohols. The major isoprenoid alcohols comprised mainly farnesol and to a lesser extent geranylgeraniol. The straight-chain alcohols included C, C, C, C and C. Interestingly, the proportion of straight alkyl chains over isoprenoid esterified side chains shifted markedly with increasing light intensity: the isoprenoid side chains dominated at low light intensities, while the straight-chain alkyl substituents dominated at higher light intensities. The authors propose that this phenomenon may be explained as a result of changing availability of reducing power, i.e. the highly reduced straight-chain alcohols have a higher biosynthetic demand for NADPH than the polyunsaturated isoprenoid with the same number of carbon atoms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27048-0
2004-08-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502555.html?itemId=/content/journal/micro/10.1099/mic.0.27048-0&mimeType=html&fmt=ahah

References

  1. Airs, R. L. & Keely, B. J. ( 2000; ). A novel approach for sensitivity enhancement in atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of chlorophylls. Rapid Commun Mass Spectrom 14, 125–128.[CrossRef]
    [Google Scholar]
  2. Airs, R. L. & Keely, B. J. ( 2002; ). Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae, characteristic fragmentation. Rapid Commun Mass Spectrom 16, 453–461.[CrossRef]
    [Google Scholar]
  3. Airs, R. L., Atkinson, J. E. & Keely, B. J. ( 2001a; ). Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917, 167–177.[CrossRef]
    [Google Scholar]
  4. Airs, R. L., Borrego, C. M., Garcia-Gil, J. & Keely, B. J. ( 2001b; ). Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG 6053 grown at low light intensity. Photosynth Res 70, 221–230.[CrossRef]
    [Google Scholar]
  5. Balaban, T. S., Holzwarth, A. R. & Schaffner, K. ( 1995; ). CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34, 15259–15266.[CrossRef]
    [Google Scholar]
  6. Biebl, H. & Pfennig, N. ( 1978; ). Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117, 9–16.[CrossRef]
    [Google Scholar]
  7. Borrego, C. M. & Garcia-Gil, J. ( 1994; ). Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth Res 41, 157–163.[CrossRef]
    [Google Scholar]
  8. Borrego, C. M. & Garcia-Gil, L. J. ( 1995; ). Rearrangement of light harvesting bacteriochlorophyll homologues as s response of green sulfur bacteria to low light intensities. Photosynth Res 45, 21–30.[CrossRef]
    [Google Scholar]
  9. Borrego, C. M., Garcia-Gil, L. J., Vila, X., Cristina, X. P., Figueras, J. B. & Abella, C. M. ( 1997; ). Distribution of bacteriochlorophyll homologs in natural populations of brown-colored phototrophic sulfur bacteria. FEMS Microbiol Ecol 24, 301–309.[CrossRef]
    [Google Scholar]
  10. Borrego, C. M., Bañeras, L. & Garcia-Gil, L. J. ( 1998; ). Temporal variability of Chlorobium phaeobacteroides antenna pigments in a meromictic karstic lake. Aquat Microb Ecol 17, 121–129.
    [Google Scholar]
  11. Borrego, C. M., Gerola, P. D., Miller, M. & Cox, R. P. ( 1999a; ). Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59, 159–166.[CrossRef]
    [Google Scholar]
  12. Borrego, C. M., Arellano, J. B., Abella, C. M., Gillbro, T. & Garcia-Gil, L. J. ( 1999b; ). The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth Res 60, 257–264.[CrossRef]
    [Google Scholar]
  13. Borrego, C. M., Garcia-Gil, L. J., Bañeras, L. & Brunet, R. C. ( 1993; ). Changes in the composition of phototrophic sulphur bacterial communities in three basins of Lake Banyoles (Spain). Verh Int Verein Limnol 25, 720–725.
    [Google Scholar]
  14. Caple, M. B., Chow, H. & Strouse, C. E. ( 1978; ). Photosynthetic pigments of green sulfur bacteria: the esterifying alcohols of bacteriochlorophylls c from Chlorobium limicola. J Biol Chem 253, 6730–6737.
    [Google Scholar]
  15. Eichler, B. & Pfennig, N. ( 1986; ). Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146, 295–300.[CrossRef]
    [Google Scholar]
  16. Eichler, B. & Pfennig, N. ( 1988; ). A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 149, 395–400.[CrossRef]
    [Google Scholar]
  17. Eisen, J. A., Nelson K. E., Paulsen, I. T. & 32 other authors ( 2002; ). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99, 9509–9514.[CrossRef]
    [Google Scholar]
  18. Fischer, C., Wiggli, M., Schanz, F., Hanselmann, K. W. & Bachofen, R. ( 1996; ). Light environment and synthesis of bacteriochlorophyll by populations of Chromatium okenii under natural environmental conditions. FEMS Microbiol Ecol 21, 1–9.[CrossRef]
    [Google Scholar]
  19. Guyoneaud, R., De Wit, R., Matheron, R. & Caumette, P. ( 1998; ). Impact of macroalgal dredging on dystrophic crises and phototrophic bacterial blooms (red waters) in a brackish coastal lagoon (Prévost lagoon, France). Oceanol Acta 21, 551–561.[CrossRef]
    [Google Scholar]
  20. Guyoneaud, R., Borrego, C. M., Martínez-Planells, A., Buitenhuis, E. T. & Garcia-Gil, L. J. ( 2001; ). Light responses in the green sulfur bacterium Prosthecochloris aestuarii: changes in prosthecae length, ultrastructure, and antenna pigment composition. Arch Microbiol 176, 278–284.[CrossRef]
    [Google Scholar]
  21. Korthals, H. & Steenbergen, C. L. M. ( 1985; ). Separation and quantification of pigments from natural phototrophic microbial populations. FEMS Microbiol Ecol 31, 177–185.[CrossRef]
    [Google Scholar]
  22. Larsen, K. L., Miller, M. & Cox, R. P. ( 1995; ). Incorporation of exogenous long-chain alcohols into bacteriochlorophyll c homologues by Chloroflexus aurantiacus. Arch Microbiol 163, 119–123.[CrossRef]
    [Google Scholar]
  23. Oelze, J. ( 1985; ). Analysis of bacteriochlorophylls. Methods Microbiol 18, 257–284.
    [Google Scholar]
  24. Otte, S. C. M., Van de Meent, J. E., Van Veelen, P. A., Pundsnes, A. S. & Amesz, J. ( 1993; ). Identification of the major chlorosomal bacteriochlorophylls of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeobacteroides; their function in lateral energy transfer. Photosynth Res 35, 159–169.[CrossRef]
    [Google Scholar]
  25. Overmann, J., Cypionka, H. & Pfennig, N. ( 1992; ). An extremely low-light adapted phototrophic sulphur bacterium from the Black Sea. Limnol Oceanogr 37, 150–155.[CrossRef]
    [Google Scholar]
  26. Pfennig, N. & Trüper, H. G. ( 1992; ). The family Chromatiaceae. In The Prokaryotes, pp. 3200–3221. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  27. Repeta, D. J., Simpson, D. J., Jørgensen, B. B. & Jannasch, H. W. ( 1989; ). Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342, 69–72.[CrossRef]
    [Google Scholar]
  28. Schweizer, E. ( 1989; ). Biosynthesis of fatty acids and related compounds. In Microbial Lipids, vol. 2, pp. 3–50. Edited by C. Ratledge & S. G. Wilkinson. London: Academic Press.
  29. Senge, M. O. & Smith, K. M. ( 1995; ). Biosynthesis and structures of bacteriochlorophylls. In Advances in Photosynthesis; Anoxygenic Photosynthetic Bacteria, vol. 2, pp. 137–151. Edited by R. E. Blankenship, M. T. Madigan & C. E. Bauer. Dordrecht: Kluwer.
  30. Sokal, R. R. & Rohlf, F. J. ( 1995; ). Biometry, 3rd edn. San Francisco: Freeman.
  31. Steensgaard, D. B., Cox, R. P. & Miller, M. ( 1996; ). Manipulation of the bacteriochlorophyll c homologue distribution in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 48, 385–393.[CrossRef]
    [Google Scholar]
  32. Stryer, L. ( 1995; ). Biochemistry, 4th edn. New York: W. H. Freeman.
  33. Vila, X. & Abella, C. A. ( 1994; ). Effect of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes. Photosynth Res 41, 53–65.[CrossRef]
    [Google Scholar]
  34. Vila, X. & Abella, C. A. ( 1999; ). Spectroradiometric identification of phototrophic microorganisms in planktonic aquatic environments. Aquat Microb Ecol 20, 225–230.[CrossRef]
    [Google Scholar]
  35. Wilson, M. A., Saleh, S. R., Hodgson, D. A. & Keely, B. J. ( 2003; ). Atmospheric pressure chemical ionisation liquid chromatography/multistage mass spectrometry of isobaric bacteriophaeophorbide d methyl esters. Rapid Commun Mass Spectrom 17, 2455–2458.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27048-0
Loading
/content/journal/micro/10.1099/mic.0.27048-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error