1887

Abstract

From the porcine pathogen cultivated in iron-deficient or haem-deficient media, haemoglobin (Hb)-agarose affinity purification was exploited to isolate an outer-membrane protein of ∼105 kDa, designated HgbA. Internal peptide sequences of purified HgbA were used to design oligonucleotide primers for PCR amplification, yielding amplicons that showed partial sequences with homology to of . Upon screening two genomic libraries of serotype 1 strain 4074, positive clones were assembled into an ORF of 2838 bp. HgbA (946 aa) includes a signal peptide of 23 aa and the deduced HgbA sequence (104 890 Da) also demonstrated a possible Ton box. The promoter region of from serotype 1 showed consensus for −35 and −10 sequences and a putative Fur-binding site. RT-PCR confirmed that of is upregulated in response to diminished levels of iron in the culture medium. While an internally deleted mutant was unable to use pig Hb as sole source of iron for growth, flow cytometry confirmed its Hb binding; the internally deleted sequences may not be required for Hb binding, but appear necessary for the iron supply from Hb. HgbA is required for growth of in the presence of Hb as sole iron source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27046-0
2004-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501723.html?itemId=/content/journal/micro/10.1099/mic.0.27046-0&mimeType=html&fmt=ahah

References

  1. Archambault M., Rioux S., Jacques M.. 1999; Evaluation of the hemoglobin-binding activity of Actinobacillus pleuropneumoniae using fluorescein-labeled pig hemoglobin and flow cytometry. FEMS Microbiol Lett173:17–25[CrossRef]
    [Google Scholar]
  2. Archambault M., Labrie J., Rioux C., Dumas F., Thibault T., Elkins C., Jacques M.. 2003; Identification and preliminary characterization of a 75-kDa hemin- and hemoglobin-binding outer membrane protein of Actinobacillus pleuropneumoniae serotype 1. Can J Vet Res67:271–277
    [Google Scholar]
  3. Baltes N., Tonpitak W., Hennig-Pauka I., Gruber A. D., Gerlach G. F.. 2003; Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence. FEMS Microbiol Lett220:41–48[CrossRef]
    [Google Scholar]
  4. Bélanger M., Bégin C., Jacques M.. 1995; Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin. Infect Immun63:656–662
    [Google Scholar]
  5. Bosch M., Garrido M. E., Llagostera M., Badiola I., de Rozas M. P., Barbé J.. 2002; Characterization of the Pasteurella multocida hgbA gene encoding a hemoglobin-binding protein. Infect Immun70:5955–5964[CrossRef]
    [Google Scholar]
  6. Bossé J. T., Janson H., Sheehan B. J., Beddek A. J., Rycroft A. N., Kroll S., Langford P. R.. 2002; Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect4:225–235[CrossRef]
    [Google Scholar]
  7. Bracken C. S., Baer M. T., Abdur-Rashid A., Helms W., Stojiljkovic I.. 1999; Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol181:6063–6072
    [Google Scholar]
  8. Buchanan S. K., Smith B. S., Venkatramani L., Xia D., Esser L., Palnitkar M., Chakraborty R., Deisenhofer J., van der Helm D.. 1999; Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol6:56–63[CrossRef]
    [Google Scholar]
  9. Byers B. R., Arceneaux J. E. L.. 1998; Microbial iron transport: iron acquisition by pathogenic microorganisms. In Metal Ions in Biological Systems, Iron Transport and Storage in Microorganisms, Plants and Animals vol 35 pp.37–66 Edited by Sigel A., Sigel H.. New York: Marcel Dekker;
  10. Dehio C., Meyer M.. 1997; Maintenance of broad-host-range incompatibility group P and Q plasmids and transposition of Tn5 inBartonella henselae following conjugal transfer from Escherichia coli. J Bacteriol179:538–540
    [Google Scholar]
  11. Deneer H. G., Potter A. A.. 1989; Effect of iron restriction on the outer membrane proteins of Actinobacillus (Haemophilus)pleuropneumoniae. Infect Immun57:798–804
    [Google Scholar]
  12. Diarra M. S., Dolence J. A., Dolence E. K., Darwish I., Miller M. J., Malouin F., Jacques M.. 1996; Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catecholate siderophores. Appl Environ Microbiol62:853–859
    [Google Scholar]
  13. D'Silva C. G., Archibald F. S., Niven D. F.. 1995; Comparative study of iron acquisition by biotype 1 and biotype 2 strains of Actinobacillus pleuropneumoniae. Vet Microbiol44:11–23[CrossRef]
    [Google Scholar]
  14. Eddy S. R., Sonnhammer E. L. L., Bateman A., Birney E., Durbin R., Howe K. L.. 2000; The Pfam protein families database. Nucleic Acids Res28:263–266[CrossRef]
    [Google Scholar]
  15. Elkins C., Chen C. J., Thomas C. E.. 1995; Characterization of hgbA locus encoding a hemoglobin receptor fromH. ducreyi. Infect Immun63:2194–2220
    [Google Scholar]
  16. Fenwick B., Henry S.. 1994; Porcine pleuropneumonia. J Am Vet Med Assoc204:1334–1340
    [Google Scholar]
  17. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W.. 1998; Siderophore-mediated iron transport: crystal structure of the FhuA with bound lipopolysaccharide. Science282:2215–2220[CrossRef]
    [Google Scholar]
  18. Frey J.. 1992; Construction of a broad host range shuttle vector for gene cloning and expression in Actinobacillus pleuropneumoniae and other Pasteurellaceae. Res Microbiol143:263–269[CrossRef]
    [Google Scholar]
  19. Genco C. A., Dixon D. W.. 2001; Emerging strategies in microbial haem capture. Mol Microbiol39:1–11[CrossRef]
    [Google Scholar]
  20. Gerlach G. F., Anderson C., Potter A. A., Klashinsky S., Willson P. J.. 1992; Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect Immun60:892–898
    [Google Scholar]
  21. Gonzalez G. C., Yu R.-Y., Rosteck P. R. J., Schryvers A. B.. 1995; Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes. Microbiology141:2405–2416[CrossRef]
    [Google Scholar]
  22. Hanson M. S., Hansen E. J.. 1991; Molecular cloning of a haemin-binding lipoprotein from Haemophilus influenzae type b. Mol Microbiol5:267–278[CrossRef]
    [Google Scholar]
  23. Lee B. C.. 1992; Isolation of an outer membrane haemin-binding protein of Haemophilus influenzae type b. Infect Immun60:810–816
    [Google Scholar]
  24. Lee B. C.. 1995; Quelling the red menace: haem capture by bacteria. Mol Microbiol18:383–390[CrossRef]
    [Google Scholar]
  25. Litwin C. M., Calderwood S. B.. 1993; The role of iron in the regulation of virulence genes. Clin Microbiol Rev6:137–149
    [Google Scholar]
  26. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D.. 1998; Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell95:771–778[CrossRef]
    [Google Scholar]
  27. Maciver I., Latimer J. L., Liem H. H., Muller-Eberhard U. Z., Hrkal Z., Hansen E. J.. 1996; Identification of an outer membrane protein involved in utilization of haemoglobin-haptoglobin complexes by nontypeable Haemophilus influenzae. Infect Immun64:3703–3712
    [Google Scholar]
  28. Mikael L. G., Pawelek P. D., Labrie J., Sirois M., Coulton J. W., Jacques M.. 2002; Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. Microbiology148:2869–2882
    [Google Scholar]
  29. Mikael L. G., Srikumar R., Coulton J. W., Jacques M.. 2003; fhuA of Actinobacillus pleuropneumoniae encodes a ferrichrome receptor and is not regulated by iron. Infect Immun71:2911–2915[CrossRef]
    [Google Scholar]
  30. Morton D. J., Whitby P. W., Jin H., Ren Z., Stull T. L.. 1999; Effect of multiple mutations in hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae type b. Infect Immun67:2729–2739
    [Google Scholar]
  31. Niven D. F., Donga J., Archibald F. S.. 1989; Responses of Haemophilus pleuropneumoniae to iron restriction; changes in the outer membrane protein profile and the removal of iron from porcine transferrin. Mol Microbiol3:1083–1089[CrossRef]
    [Google Scholar]
  32. Oswald W., Walaiporn T., Ohrt G., Gerlach G. F.. 1999; A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker. FEMS Microbiol Lett179:153–160[CrossRef]
    [Google Scholar]
  33. Otto B. R., Verweij-Van Vught A. M. J. J., Maclaren D. M.. 1992; Transferrins and heme compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol18:217–233[CrossRef]
    [Google Scholar]
  34. Palmer K. L., Grass S., Munson R. S.. 1994; Identification of a hemolytic activity elaborated by Haemophilus ducreyi. Infect Immun62:3041–3043
    [Google Scholar]
  35. Simpson W., Olczak T., Genco C. A.. 2000; Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol182:5737–5748[CrossRef]
    [Google Scholar]
  36. Stojiljkovic I., Larson J., Hwa V., Anic S., So M.. 1996; HmbR outer membrane receptors of pathogenic Neisseria spp. iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol178:4670–4678
    [Google Scholar]
  37. Vézina G., Sirois M., Clairoux N., Boissinot M.. 1997; Cloning and characterization of the groE locus from Actinobacillus pleuropneumoniae. FEMS Microbiol Lett147:11–16[CrossRef]
    [Google Scholar]
  38. Wandersman C., Stojiljkovic I.. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol3:215–220[CrossRef]
    [Google Scholar]
  39. Williams P., Griffiths E.. 1992; Bacterial transferrin receptors: structure, function and contribution to virulence. Med Microbiol Immunol181:301–322
    [Google Scholar]
  40. Wilm M., Shevchenko A., Houthaeve T., Brelt S., Schwelgerer L., Fotsis T., Mann M.. 1996; Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature379:466–469[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27046-0
Loading
/content/journal/micro/10.1099/mic.0.27046-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error