1887

Abstract

2,4-Diacetylphloroglucinol (PHL) is the primary determinant of the biological control activity of F113. The operon encodes enzymes responsible for PHL biosynthesis from intermediate metabolites. The gene, which is located downstream of the operon, encodes a putative permease suggested to be a member of the major facilitator superfamily with 12 transmembrane segments. PhlE has been suggested to function in PHL export. Here the sequencing of the gene from F113 and the construction of a null mutant, F113-D3, is reported. It is shown that F113-D3 produced less PHL than F113. The ratio of cell-associated to free PHL was not significantly different between the strains, suggesting the existence of alternative transporters for PHL. The mutant was, however, significantly more sensitive to high concentrations of added PHL, implicating PhlE in PHL resistance. Furthermore, the mutant was more susceptible to osmotic, oxidative and heat-shock stresses. Osmotic stress induced rapid degradation of free PHL by the bacteria. Based on these results, we propose that the role of in general stress tolerance is to export toxic intermediates of PHL degradation from the cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27033-0
2004-07-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502443.html?itemId=/content/journal/micro/10.1099/mic.0.27033-0&mimeType=html&fmt=ahah

References

  1. Aarons, S., Abbas, A., Adams, C., Fenton, A. & O'Gara, F. ( 2000; ). A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182, 3913–3919.[CrossRef]
    [Google Scholar]
  2. Abbas, A., Morrissey, J. P., Carnicero-Marquez, P., Sheehan, M. M., Delany, I. R. & O'Gara, F. ( 2002; ). Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184, 3008–3016.[CrossRef]
    [Google Scholar]
  3. Ahmed, M., Lyass, L., Markham, P. N., Taylor, S. S., Vásquez-Laslop, N. & Neyfakh, A. A. ( 1995; ). Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol 177, 3904–3910.
    [Google Scholar]
  4. Bangera, M. G. & Thomashow, L. S. ( 1996; ). Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant–Microbe Interact 9, 83–90.[CrossRef]
    [Google Scholar]
  5. Bangera, M. G. & Thomashow, L. S. ( 1999; ). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181, 3155–3163.
    [Google Scholar]
  6. Barios, H., Valderrama, B. & Morett, E. ( 1999; ). Compilation and analysis of σ 54-dependent promoter sequences. Nucleic Acids Res 27, 4305–4313.[CrossRef]
    [Google Scholar]
  7. Bentley, J., Hyatt, L. S., Ainley, K., Parish, J. H., Herbert, R. B. & White, G. R. ( 1993; ). Cloning and sequence analysis of an Escherichia coli gene conferring bicyclomycin resistance. Gene 127, 117–120.[CrossRef]
    [Google Scholar]
  8. Boruah, H. P. & Kumar, B. S. ( 2002; ). Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens. Folia Microbiol 47, 359–363.[CrossRef]
    [Google Scholar]
  9. Bowden, K., Broadbent, J. L. & Ross, W. J. ( 1965; ). Some simple antihelminthics. Br J Pharmacol 24, 714–724.
    [Google Scholar]
  10. Brautaset, T., Sekurova, O. N., Sletta, H., Ellingsen, T. E., Strøm, A. R., Valla, S. & Zotchev, S. B. ( 2000; ). Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455, analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7, 395–403.[CrossRef]
    [Google Scholar]
  11. Chou, J. H., Greenberg, J. T. & Demple, B. ( 1993; ). Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress, positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 175, 1026–1031.
    [Google Scholar]
  12. Corbell, N. & Loper, J. E. ( 1995; ). A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177, 6230–6236.
    [Google Scholar]
  13. Delany, I. ( 1999; ). Genetic analysis of the production of the antifungal metabolite 2,4-diacetylphloroglucinol by the biocontrol strain Pseudomonas fluorescens F113. PhD thesis, University College Cork.
  14. Delany, I., Sheehan, M. M., Fenton, A., Bardin, S., Aarons, S. & O'Gara, F. ( 2000; ). Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146, 537–543.
    [Google Scholar]
  15. Duffy, B. K. & Defago, G. ( 1999; ). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65, 2429–2438.
    [Google Scholar]
  16. Farinha, M. A. & Kropinski, A. M. ( 1990; ). High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 58, 221–225.
    [Google Scholar]
  17. Fernandez-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. ( 1991; ). The act cluster contains regulatory and antibiotic export genes, direct target for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 769–780.[CrossRef]
    [Google Scholar]
  18. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  19. George, A. M. & Levy, S. B. ( 1983; ). Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid determined efflux of tetracycline. J Bacteriol 155, 351–362.
    [Google Scholar]
  20. Guillfoile, P. G. & Hutchinson, C. R. ( 1992; ). Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 174, 3651–3658.
    [Google Scholar]
  21. Harrison, L. A., Letendre, L., Kovacevich, P., Pierson, E. & Weller, D. M. ( 1993; ). Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25, 215–221.[CrossRef]
    [Google Scholar]
  22. Kawamura-Sato, K., Shibayama, K., Horii, T., Iimuma, Y., Arakawa, Y. & Ohta, M. ( 1999; ). Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol Lett 179, 345–352.[CrossRef]
    [Google Scholar]
  23. Keel, C., Schnider, U., Maurhofer, M., Viossard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. & Defago, G. ( 1992; ). Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant–Microbe Interact 5, 4–13.[CrossRef]
    [Google Scholar]
  24. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M. & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16, 800–802.
    [Google Scholar]
  25. Levy, E., Gough, F. J., Berlin, D. K., Guiana, P. W. & Smith, J. T. ( 1992; ). Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol 41, 335–341.[CrossRef]
    [Google Scholar]
  26. Ma, D., Cook, D. N., Alberti, M., Pon, N. G., Nikaido, H. & Hearst, J. H. ( 1995; ). Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16, 45–55.[CrossRef]
    [Google Scholar]
  27. Marger, M. D. & Saier, M. H., Jr ( 1993; ). A major facilitator superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18, 13–20.[CrossRef]
    [Google Scholar]
  28. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  29. Miyazaki, M., Kohno, K., Uchiumi, T., Tanimura, H., Matsuo, K., Nasu, M. & Kuwano, M. ( 1992; ). Activation of human multidrug resistance-1 gene promoter in response to heat shock stress. Biochem Biophys Res Commun 187, 677–684.[CrossRef]
    [Google Scholar]
  30. Molnar, I., Schupp, T., Ono, M. & 13 other authors ( 2000; ). The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum Soce90. Chem Biol 7, 97–109.[CrossRef]
    [Google Scholar]
  31. Naroditskaya, V., Schlosser, M. J., Fang, N. Y. & Lewis, K. ( 1993; ). An E. coli gene emrD is involved in adaptation to low energy shock. Biochem Biophys Res Commun 196, 803–809.[CrossRef]
    [Google Scholar]
  32. Neyfakh, A. A., Bidnenko, V. E. & Chen, L. B. ( 1991; ). Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A 88, 4781–4785.[CrossRef]
    [Google Scholar]
  33. Nowak-Thompson, B., Gould, S. J., Kraus, J. & Loper, J. E. ( 1994; ). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40, 1064–1066.[CrossRef]
    [Google Scholar]
  34. Paulsen, I. T. & Sukurray, R. A. ( 1993; ). Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes – an analysis. Gene 124, 1–11.[CrossRef]
    [Google Scholar]
  35. Pridmore, R. D. ( 1987; ). New and versatile cloning vectors with kanamycin resistance marker. Gene 56, 309–312.[CrossRef]
    [Google Scholar]
  36. Putman, M., van Veen, H. W. & Konings, W. N. ( 2000; ). Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64, 672–693.[CrossRef]
    [Google Scholar]
  37. Putman, M., van Veen, H. W., Degener, J. E. & Konings, W. N. ( 2001; ). The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 147, 2873–2880.
    [Google Scholar]
  38. Reddi, T. K. & Borovkov, A. V. ( 1970; ). Antibiotic properties of 2,4-diacetylphloroglucinol (2,4-diacetyl-1,3,5-trihydroxybenzene) produced by Pseudomonas fluorescens strain 26-o. Antibiotiki 15, 19–21 (in Russian).
    [Google Scholar]
  39. Reddi, T. K., Khudiakov, Y. P. & Borovkov, A. V. ( 1969; ). Pseudomonas fluorescens strain 26-o, producing phytotoxic substances. Mikrobiologiya 38, 909–913 (in Russian).
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Scher, F. M. & Baker, R. ( 1982; ). Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil supressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567–1573.[CrossRef]
    [Google Scholar]
  42. Schnider-Keel, U., Seematter, A., Maurhofer, M. & 8 other authors ( 2000; ). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182, 1215–1225.[CrossRef]
    [Google Scholar]
  43. Schoonbeek, H. J., Raaijmakers, J. M. & De Waard, M. A. ( 2002; ). Fungal ABC transporters and microbial interactions in natural environments. Mol Plant–Microb Interact 15, 1165–1172.[CrossRef]
    [Google Scholar]
  44. Shanahan, P., O'Sullivan, D., Simpson, P., Glennon, J. & O'Gara, F. ( 1992; ). Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58, 353–358.
    [Google Scholar]
  45. Sharifi-Tehrani, A., Zala, M., Natsch, A., Moenne-Loccoz, Y. & Defago, G. ( 1998; ). Biocontrol of soil-borne fungal plant diseases by 2,4-diacetyphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104, 631–643.[CrossRef]
    [Google Scholar]
  46. Tomas-Lorente, F., Iniesta-Sanmartin, E., Tomas-Barberan, F. A., Trowitzsch-Kienast, W. & Wray, V. ( 1989; ). Antifungal phloroglucinol derivative and lipophilic flavenoids from Helichrysum decumbens. Phytochemistry 28, 1613–1615.[CrossRef]
    [Google Scholar]
  47. Weller, D. M. & Cook, R. J. ( 1983; ). Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads. Phytopathology 73, 463–469.[CrossRef]
    [Google Scholar]
  48. Yoshida, H., Bogaki, M., Nakamura, S., Ubukata, K. & Konno, M. ( 1990; ). Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 172, 6942–6949.
    [Google Scholar]
  49. Zuker, M., Mathews, D. H. & Turner, D. H. ( 1999; ). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology (NATO ASI Series), pp. 11–43. Edited by J. Barciszewski & B. F. C. Clark. Dordrecht: Kluwer.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27033-0
Loading
/content/journal/micro/10.1099/mic.0.27033-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error