1887

Abstract

Two strains of obligate chemolithoautotrophic sulfur-oxidizing bacteria were isolated from soda-lake sediments by enrichment culture with thiocyanate and nitrate at pH 9·9. The isolates were capable of growth with thiocyanate or thiosulfate as electron donor, either aerobically or anaerobically, and with nitrate or nitrite as electron acceptor. Cyanate was identified as an intermediate of thiocyanate oxidation, while sulfate, ammonia and dinitrogen gas were the final products. The anaerobic growth on thiocyanate plus nitrate was much slower ( =0·006 h) than on thiosulfate plus nitrate ( =0·02 h), while growth yields were similar (4·8 and 5·1 g protein mol, respectively). On the basis of their phenotypic and genetic properties, strains ARhD 1 and ARhD 2 are described as a novel species of the genus , with the highest similarity to . The name sp. nov. is proposed for this novel species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27015-0
2004-07-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502435.html?itemId=/content/journal/micro/10.1099/mic.0.27015-0&mimeType=html&fmt=ahah

References

  1. Andreoni V., Ferrari A., Pagani A., Sorlini C., Tandoi V., Treccani V.. 1988; Thiocyanate degradation by denitrifying mixed cultures of bacteria. Ann Microbiol Enzimol38:193–200
    [Google Scholar]
  2. Cypionka H., Pfennig N.. 1986; Growth yield of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol143:396–399[CrossRef]
    [Google Scholar]
  3. De Kruyff C. D., van der Walt J. I., Schwartz H. M.. 1957; The utilization of thiocyanate and nitrate by thiobacilli. Antonie van Leeuwenhoek23:305–316[CrossRef]
    [Google Scholar]
  4. Dictor M.-C., Battaglia-Brunet F., Morin D., Bories A., Clarens M.. 1997; Biological treatment of gold ore cyanidation wastewater in fixed bed reactors. Environ Pollut97:287–294[CrossRef]
    [Google Scholar]
  5. Gries-Romijn-van Eck. 1966; Physiological and chemical test for drinking water. NEN 1056, IY-2 Nederlandse Normalisatie Instituut Rijswijk
  6. Happold F. C., Johnstone K. I., Roger H. S., Youatt J. B.. 1954; The isolation and characteristics of an organism oxidizing thiocyanate. J Gen Microbiol10:261–266[CrossRef]
    [Google Scholar]
  7. Happold F. C., Jones G. L., Pratt D. B.. 1958; Utilization of thiocyanate by Thiobacillus thioparus and T. thiocyanooxidans. Nature182:266–267[CrossRef]
    [Google Scholar]
  8. Katayama Y., Kuraishi H.. 1978; Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Can J Microbiol24:804–810[CrossRef]
    [Google Scholar]
  9. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H.. 1992; A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulphide from thiocyanate. J Biol Chem267:9170–9175
    [Google Scholar]
  10. Katayama Y., Kanagawa T., Kuraishi H.. 1993; Emission of carbonyl sulphide by Thiobacillus thioparus grown with thiocyanate in pure and mixed cultures. FEMS Microbiol Lett114:223–228[CrossRef]
    [Google Scholar]
  11. Katayama Y., Matsushita Y., Kaneko M., Kondo M., Mizuno T., Nyunoya H.. 1998; Cloning of genes coding for the subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol180:2583–2589
    [Google Scholar]
  12. Kelly D. P.. 1982; Biochemistry of the chemolithoautotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B298:499–528[CrossRef]
    [Google Scholar]
  13. Kelly D. P., Baker S. C.. 1990; The organosulphur cycle: aerobic and anaerobic processes leading to turnover of C1-sulphur compounds. FEMS Microbiol Rev87:241–246[CrossRef]
    [Google Scholar]
  14. Kelly D. P., Chambers T. A., Trudinger P. A.. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulphate and tetrathionate. Anal Chem41:898–902[CrossRef]
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  16. Murillo F. M., Gugliuzza T., Senko J., Basu P., Stolz J.. 1999; A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens. Arch Microbiol172:313–320[CrossRef]
    [Google Scholar]
  17. Pfennig N., Lippert K. D.. 1966; Über das Vitamin B12-bedürfnis phototropher Schwefel Bacterien. Arch Microbiol55:245–256
    [Google Scholar]
  18. Smith N. A., Kelly D. P.. 1988; Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol134:3041–3048
    [Google Scholar]
  19. Sörbo B. 1957; A colorimetric determination of thiosulphate. Biochim Biophys Acta23:412–416[CrossRef]
    [Google Scholar]
  20. Sorokin D. Y., Muyzer G., Brinkhoff T., Kuenen J. G., Jetten M.. 1998; Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species – Nitrobacter alkalicus. Arch Microbiol170:345–352[CrossRef]
    [Google Scholar]
  21. Sorokin D. Yu, Tourova T. P., Lysenko A. M., Kuenen J. G.. 2001a; Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol67:528–538[CrossRef]
    [Google Scholar]
  22. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen J. G.. 2001b; Thioalkalimicrobium sibiricum, Thioalkalimicrobium aerophilum gen. nov., sp. nov., and Thioalkalivibrio versutus, Thioalkalivibrio nitratis, Thioalkalivibrio denitrificans gen. nov.,sp. nov., new obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol51:565–580
    [Google Scholar]
  23. Sorokin D. Y., Tourova T. P., Schmid M., Wagner M., Koops H.-P., Kuenen J. G., Jetten M.. 2001c; Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol176:170–177[CrossRef]
    [Google Scholar]
  24. Sorokin D. Yu, Kuenen J. G., Jetten M.. 2001d; Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulphur-oxidizing bacterium Thialkalivibrio denitrificans. Arch Microbiol175:94–101[CrossRef]
    [Google Scholar]
  25. Sorokin D. Y., Tourova T. P., Lysenko A. M., Mityushina L. L., Kuenen J. G.. 2002; Thialkalivibrio thiocyanoxidans sp.nov. and Thialkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulphur-oxidizing bacteria from soda lakes capable of growth on thiocyanate. Int J Syst Evol Microbiol52:657–664
    [Google Scholar]
  26. Sorokin D. Y., Antipov A. N., Kuenen J. G.. 2003; Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake. Arch Microbiol180:127–133[CrossRef]
    [Google Scholar]
  27. Visser J. M., Robertson L. A., Van Verseveld H. W., Kuenen J. G.. 1997; Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl Environ Microbiol63:2300–2305
    [Google Scholar]
  28. Weatherburn M. V.. 1967; Phenol-hypochlorite reaction for determination of ammonia. Anal Chem39:971–974[CrossRef]
    [Google Scholar]
  29. Wood J. L.. 1975; Biochemistry. In Thiocyanic Acid and its Derivatives pp156–252Edited by Newman A. A.. London, New York, San Francisco: Academic Press;
    [Google Scholar]
  30. Youatt J. B.. 1954; Studies on the metabolism of Thiobacillus thiocyanooxidans. J Gen Microbiol11:139–149[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27015-0
Loading
/content/journal/micro/10.1099/mic.0.27015-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error