1887

Abstract

Cyanobacteria constitute an ancient, diverse and ecologically important bacterial group. The responses of these organisms to light and nutrient conditions are finely controlled, enabling the cells to survive a range of environmental conditions. In particular, it is important to understand how cyanobacteria acclimate to the absorption of excess excitation energy and how stress-associated transcripts accumulate following transfer of cells from low- to high-intensity light. In this study, quantitative RT-PCR was used to monitor changes in levels of transcripts encoding chaperones and stress-associated proteases in three cyanobacterial strains that inhabit different ecological niches: the freshwater strain sp. PCC 6803, the marine high-light-adapted strain MED4 and the marine low-light-adapted strain MIT9313. Levels of transcripts encoding stress-associated proteins were very sensitive to changes in light intensity in all of these organisms, although there were significant differences in the degree and kinetics of transcript accumulation. A specific set of genes that seemed to be associated with high-light adaptation (/, , , and ) could be targeted for more detailed studies in the future. Furthermore, the strongest responses were observed in MED4, a strain characteristic of the open ocean surface layer, where genes could play a critical role in cell survival.

Keyword(s): HL, high light and LL, low light
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27014-0
2004-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501271.html?itemId=/content/journal/micro/10.1099/mic.0.27014-0&mimeType=html&fmt=ahah

References

  1. Apte, S. K., Fernandes, T., Badran, H. & Ballal, A. ( 1998; ). Expression and possible role of stress-responsive proteins in Anabaena. J Biosci 23, 399–406.[CrossRef]
    [Google Scholar]
  2. Asada, K. ( 1994; ). Production and action of active oxygen species in photosynthetic tissues. In Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants, pp. 77–104. Edited by C. H. Foyer & P. M. Mullineaux. Boca Raton, FL: CRC Press.
  3. Bhaya, D., Vaulot, D., Amin, P., Takahashi, A. & Grossman, A. ( 2000; ). Isolation of regulated genes of the cyanobacterium Synechocystis sp. strain PCC 6803 by differential display. J Bacteriol 182, 5692–5699.[CrossRef]
    [Google Scholar]
  4. Bhaya, D., Dufresne, A., Vaulot, D. & Grossman, A. ( 2002; ). Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol Lett 215, 209–219.[CrossRef]
    [Google Scholar]
  5. Bukau, B. & Horwich, A. L. ( 1998; ). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.[CrossRef]
    [Google Scholar]
  6. Clarke, A. K. & Eriksson, M. J. ( 1996; ). The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants. Plant Mol Biol 31, 721–730.[CrossRef]
    [Google Scholar]
  7. Clarke, A. K., Schelin, J. & Porankiewicz, J. ( 1998; ). Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Plant Mol Biol 37, 791–801.[CrossRef]
    [Google Scholar]
  8. De Saizieu, A., Certa, U., Warrington, J., Gray, C., Keck, W. & Mous, J. ( 1998; ). Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nat Biotechnol 16, 45–48.
    [Google Scholar]
  9. Eriksson, M. J. & Clarke, A. K. ( 1996; ). The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178, 4839–4846.
    [Google Scholar]
  10. Eriksson, M. J., Schelin, J., Miskiewicz, E. & Clarke, A. K. ( 2001; ). Novel form of ClpB/HSP100 protein in the cyanobacterium Synechococcus. J Bacteriol 183, 7392–7396.[CrossRef]
    [Google Scholar]
  11. Glatz, A., Horvath, I., Varvasovszki, V., Kovacs, E., Torok, Z. & Vigh, L. ( 1997; ). Chaperonin genes of the Synechocystis PCC 6803 are differentially regulated under light-dark transition during heat stress. Biochem Biophys Res Commun 239, 291–297.[CrossRef]
    [Google Scholar]
  12. Glatz, A., Vass, I., Los, D. A. & Vigh, L. ( 1999; ). The Synechocystis model of stress: from molecular chaperones to membranes. Plant Physiol Biochem 37, 1–12.[CrossRef]
    [Google Scholar]
  13. Glover, J. R. & Lindquist, S. ( 1998; ). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82.[CrossRef]
    [Google Scholar]
  14. Gottesman, S. ( 1996; ). Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465–506.[CrossRef]
    [Google Scholar]
  15. Gottesman, S., Wickner, S. & Maurizi, M. R. ( 1997; ). Protein quality control: triage by chaperones and proteases. Genes Dev 11, 815–823.[CrossRef]
    [Google Scholar]
  16. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. ( 1998; ). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–1347.[CrossRef]
    [Google Scholar]
  17. He, Q., Dolganov, N., Bjorkman, O. & Grossman, A. R. ( 2001; ). The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276, 306–314.[CrossRef]
    [Google Scholar]
  18. Herman, C. & D'Ari, R. ( 1998; ). Proteolysis and chaperones: the destruction/reconstruction dilemma. Curr Opin Microbiol 1, 204–209.[CrossRef]
    [Google Scholar]
  19. Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. & Ikeuchi, M. ( 2001; ). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13, 793–806.[CrossRef]
    [Google Scholar]
  20. Hossain, M. M. & Nakamoto, H. ( 2002; ). HtpG plays a role in cold acclimation in cyanobacteria. Curr Microbiol 44, 291–296.[CrossRef]
    [Google Scholar]
  21. Hossain, M. M. & Nakamoto, H. ( 2003; ). Role for the cyanobacterial HtpG in protection from oxidative stress. Curr Microbiol 46, 70–76.[CrossRef]
    [Google Scholar]
  22. Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. ( 2002; ). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184, 6845–6858.[CrossRef]
    [Google Scholar]
  23. Jacquet, S., Partensky, F., Marie, D., Casotti, R. & Vaulot, D. ( 2001; ). Cell cycle regulation by light in Prochlorococcus strains. Appl Environ Microb 67, 782–790.[CrossRef]
    [Google Scholar]
  24. Kaneko, T., Sato, S., Kotani, H. & 21 other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  25. Kovacs, E., van der Vies, S. M., Glatz, A., Torok, Z., Varvasovszki, V., Horvath, I. & Vigh, L. ( 2001; ). The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Biophys Res Commun 289, 908–915.[CrossRef]
    [Google Scholar]
  26. Levchenko, I., Luo, L. & Baker, T. ( 1995; ). Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9, 2399–2408.[CrossRef]
    [Google Scholar]
  27. Lindquist, S. & Craig, E. A. ( 1988; ). The heat-shock proteins. Annu Rev Genet 22, 631–677.[CrossRef]
    [Google Scholar]
  28. Mann, N. H. ( 2002; ). Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Lett 27, 17–34.
    [Google Scholar]
  29. Mary, I. & Vaulot, D. ( 2003; ). Two-component systems in Prochlorococcus MED4: genomic analysis and differential expression under stress. FEMS Microbiol Lett 226, 135–144.[CrossRef]
    [Google Scholar]
  30. Moore, L. R., Goericke, R. & Chisholm, S. W. ( 1995; ). Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116, 259–275.[CrossRef]
    [Google Scholar]
  31. Moore, L. R., Rocap, G. & Chisholm, S. W. ( 1998; ). Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467.[CrossRef]
    [Google Scholar]
  32. Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. ( 2002; ). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47, 989–96.[CrossRef]
    [Google Scholar]
  33. Nimura, K., Takahashi, H. & Yoshikawa, H. ( 2001; ). Characterization of the dnaK multigene family in the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol 183, 1320–1328.[CrossRef]
    [Google Scholar]
  34. Partensky, F., Hess, W. R. & Vaulot, D. ( 1999; ). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63, 106–127.
    [Google Scholar]
  35. Porankiewicz, J. & Clarke, A. K. ( 1997; ). Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 179, 5111–5117.
    [Google Scholar]
  36. Porankiewicz, J., Schelin, J. & Clarke, A. K. ( 1998; ). The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29, 275–283.[CrossRef]
    [Google Scholar]
  37. Porankiewicz, J., Wang, J. & Clarke, A. ( 1999; ). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449–458.[CrossRef]
    [Google Scholar]
  38. Queitsch, C., Hong, S. W., Vierling, E. & Lindquist, S. ( 2000; ). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492.[CrossRef]
    [Google Scholar]
  39. Rajaram, H., Ballal, A. D., Apte, S. K., Wiegert, T. & Schumann, W. ( 2001; ). Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium, Anabaena sp. strain L-31. Biochim Biophys Acta 1519, 143–146.[CrossRef]
    [Google Scholar]
  40. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  41. Rocap, G., Larimer, F. W., Lamerdin, J. & 21 other authors ( 2003; ). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1001–1002.[CrossRef]
    [Google Scholar]
  42. Schelin, J., Lindmark, F. & Clarke, A. K. ( 2002; ). The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiology 148, 2255–2265.
    [Google Scholar]
  43. Tanaka, N. & Nakamoto, H. ( 1999; ). HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett 458, 117–123.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27014-0
Loading
/content/journal/micro/10.1099/mic.0.27014-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error