1887

Abstract

bearing an amber or disrupted mutation exhibited a significant decrease in the number of colony-forming units (c.f.u.) when exposed to nitrogen starvation, which was not observed in cells bearing a functional allele. The decrease in the number of c.f.u. that was observed about 25 h after initiation of nitrogen starvation was prevented by the addition of nitrogen within 3 h but not by the addition of nitrogen at more than 7 h after the initiation of nitrogen starvation, suggesting that a process leading to a decline in c.f.u. starts within this period. DNA microarray analysis of the mutant showed that a large number of genes including many functionally undefined genes were affected by nitrogen starvation. The expression levels of and regulon genes encoding acid-resistant proteins (, , and ), DNA-binding protein (), chaperones (, , , and ), chaperonins ( and ) and energy-metabolism-related proteins ( and ), and those of other genes encoding nucleotide-metabolism-related proteins ( and ), cell-division protein (), outer-membrane lipoprotein () and DNA-binding protein () were significantly decreased by 10 h nitrogen starvation. The genes encoding transport/binding proteins (, , , , and ) and amino acid-metabolism-related proteins (, , , , , , , , and ) were significantly up-regulated under the same condition, some of which are known Ntr genes expressed under nitrogen limitation. On the basis of these results, possible causes of the decrease in the number of c.f.u. under nitrogen starvation are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27012-0
2004-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502543.html?itemId=/content/journal/micro/10.1099/mic.0.27012-0&mimeType=html&fmt=ahah

References

  1. Aiba, H., Adhya, S. & de Crombrugghe, B. ( 1981; ). Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256, 11905–11910.
    [Google Scholar]
  2. Atlung, T., Nielsen, H. V. & Hansen, F. G. ( 2002; ). Characterisation of the allelic variation in the rpoS gene in thirteen K12 and six other non-pathogenic Escherichia coli strains. Mol Genet Genomics 266, 873–881.[CrossRef]
    [Google Scholar]
  3. Blauwkamp, T. A. & Ninfa, A. J. ( 2002; ). Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol Microbiol 46, 203–214.[CrossRef]
    [Google Scholar]
  4. Davis, B. D., Luger, S. J. & Tai, P. C. ( 1986; ). Role of ribosome degradation in the death of starved E. coli cells. J Bacteriol 166, 439–445.
    [Google Scholar]
  5. De Las Peñas, A., Connolly, L. & Gross, C. A. ( 1997; ). The σ E-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σ E. Mol Microbiol 24, 373–385.[CrossRef]
    [Google Scholar]
  6. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89, 11978–11982.[CrossRef]
    [Google Scholar]
  7. Gajiwala, K. S. & Burley, S. K. ( 2000; ). HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J Mol Biol 295, 605–612.[CrossRef]
    [Google Scholar]
  8. Gross, C. A. ( 1996; ). Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2188–2202. Edited by F. C. Neidhardt & others. Washington, DC: American Society for Microbiology.
  9. Hengge-Aronis, R. ( 1993; ). Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72, 165–168.[CrossRef]
    [Google Scholar]
  10. Hengge-Aronis, R. ( 1996; ). Back to log phase: σ s as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21, 887–893.[CrossRef]
    [Google Scholar]
  11. Hengge-Aronis, R. & Fischer, D. ( 1992; ). Identification and molecular analysis of glgS. a, novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6, 1877–1886.[CrossRef]
    [Google Scholar]
  12. Hengge-Aronis, R., Klein, W., Lange, R., Rimmele, M. & Boos, W. ( 1991; ). Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173, 7918–7924.
    [Google Scholar]
  13. Hengge-Aronis, R., Lange, R., Henneberg, N. & Fischer, D. ( 1993; ). Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 175, 259–265.
    [Google Scholar]
  14. Hommais, F., Krin, E., Coppee, J., Lacroix, C., Yeramian, E., Danchin, A. & Bertin, P. ( 2004; ). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72.[CrossRef]
    [Google Scholar]
  15. Ishihama, A. ( 1997; ). Adaptation of gene expression in stationary phase bacteria. Curr Opin Gen Dev 7, 582–588.[CrossRef]
    [Google Scholar]
  16. Ishihama, A. ( 1999; ). Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 4, 135–143.[CrossRef]
    [Google Scholar]
  17. Ishihama, A. ( 2000; ). Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54, 499–518.[CrossRef]
    [Google Scholar]
  18. Izu, H., Adachi, O. & Yamada, M. ( 1997; ). Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J Mol Biol 267, 778–793.[CrossRef]
    [Google Scholar]
  19. Jishage, M. & Ishihama, A. ( 1997; ). Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli. J Bacteriol 179, 959–963.
    [Google Scholar]
  20. Jorgensen, F., Bally, M., Chapon-Herve, V., Michel, G., Lazdunski, A., Williams, P. & Stewart, G. S. A. B. ( 1999; ). RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145, 835–844.[CrossRef]
    [Google Scholar]
  21. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. ( 2002; ). The KEGG databases at GenomeNet. Nucleic Acids Res 30, 42–46.[CrossRef]
    [Google Scholar]
  22. Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley, S. M., Pellegrini-Toole, A., Bonavides, C. & Gama-Castro, S. ( 2002; ). The EcoCyc database. Nucleic Acids Res 30, 56–58.[CrossRef]
    [Google Scholar]
  23. Khil, P. P. & Camerini-Otero, R. D. ( 2002; ). Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44, 89–105.[CrossRef]
    [Google Scholar]
  24. Kim, J., Yoshimura, S. H., Hizume, H., Ohniwa, R. L., Ishihama, A. & Takeyasu, K. ( 2004; ). Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res 32, 1982–1992.[CrossRef]
    [Google Scholar]
  25. Kolter, R., Siegele, D. A. & Tormo, A. ( 1993; ). The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47, 855–874.[CrossRef]
    [Google Scholar]
  26. Lange, R. & Hengge-Aronis, R. ( 1991a; ). Identification of a central regulator of stationary phase gene expression in Escherichia coli. Mol Microbiol 5, 49–59.[CrossRef]
    [Google Scholar]
  27. Lange, R. & Hengge-Aronis, R. ( 1991b; ). Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor σ S. J Bacteriol 173, 4474–4481.
    [Google Scholar]
  28. Loewen, P. C. & Triggs, B. L. ( 1984; ). Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli. J Bacteriol 160, 668–675.
    [Google Scholar]
  29. Magasanik, B. ( 1996; ). Regulation of nitrogen utilization. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2118-2202. Edited by F. C. Neidhardt & others. Washington, DC: American Society for Microbiology.
  30. Masuda, N. & Church, G. M. ( 2003; ). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48, 699–712.[CrossRef]
    [Google Scholar]
  31. Masuda, Y., Miyakawa, K., Nishimura, Y. & Ohtsubo, E. ( 1993; ). chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol 175, 6850–6856.
    [Google Scholar]
  32. Matin, A. ( 1991; ). The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5, 3–10.[CrossRef]
    [Google Scholar]
  33. McCann, M. P., Kidwell, J. P. & Matin, A. ( 1991; ). The putative σ factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173, 4188–4194.
    [Google Scholar]
  34. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Missiakas, D. & Raina, S. ( 1997; ). Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways. TiBS 22, 59–63.
    [Google Scholar]
  36. Muffler, A., Barth, M., Marschall, C. & Hengge-Aronis, R. ( 1997; ). Heat shock regulation of σ S turnover: a role of DnaK and relationship between stress responses mediated by σ S and σ 32 in Escherichia coli. J Bacteriol 179, 445–452.
    [Google Scholar]
  37. Nitta, T., Nagamitsu, H., Murata, M., Izu, H. & Yamada, M. ( 2000; ). Function of the σ E regulon in dead-cell lysis in stationary phase Escherichia coli. J Bacteriol 182, 5231–5237.[CrossRef]
    [Google Scholar]
  38. Notley-McRobb, L., King, T. & Ferenci, T. ( 2002; ). rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184, 806–811.[CrossRef]
    [Google Scholar]
  39. O'Neal, C. R., Gabriel, W. M., Turk, A. K., Libby, S. J., Fang, F. C. & Spector, M. P. ( 1994; ). RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol 176, 4610–4616.
    [Google Scholar]
  40. Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y., Hiraga, S. & Mori, H. ( 2002; ). Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45, 673–695.[CrossRef]
    [Google Scholar]
  41. Reeve, C. A., Amy, P. S. & Matin, A. ( 1984; ). Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160, 1041–1046.
    [Google Scholar]
  42. Reitzer, L. & Schneider, B. L. ( 2001; ). Metabolic context and possible physiological themes of σ 54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65, 422–444.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  45. Siegele, D. A. & Kolter, R. ( 1992; ). Life after log. J Bacteriol 174, 345–348.
    [Google Scholar]
  46. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. ( 1994; ). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729–1737.
    [Google Scholar]
  47. Soupene, E., van Heeswijk, W. C., Plumbridge, J. & 7 other authors ( 2003; ). Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol 185, 5611–5626.[CrossRef]
    [Google Scholar]
  48. Talukder, A. A., Yanai, S., Nitta, T., Kato, A. & Yamada, M. ( 1996; ). RpoS-dependent regulation of genes expressed at late stationary phase in Escherichia coli. FEBS Lett 386, 177–180.[CrossRef]
    [Google Scholar]
  49. Touati, E., Dassa, E. & Boquet, P. L. ( 1986; ). Pleiotropic mutations in appR reduce pH 2·5 acid phosphatase expression and restore succinate utilization in CRP-deficient strains of Escherichia coli. Mol Gen Genet 202, 257–264.[CrossRef]
    [Google Scholar]
  50. Yamada, M., Sumi, K., Matsushita, K., Adachi, O. & Yamada, Y. ( 1993; ). Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268, 12812–12817.
    [Google Scholar]
  51. Yamada, M., Nitta, T. & Talukder, A. A. ( 1999; ). Characterization of the ssnA gene, which is involved in the decline of cell viability at the beginning of stationary phase in Escherichia coli. J Bacteriol 181, 1838–1846.
    [Google Scholar]
  52. Zambrano, M. M. & Kolter, R. ( 1996; ). GASPing for life in stationary phase. Cell 86, 181–184.[CrossRef]
    [Google Scholar]
  53. Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A. & Kolter, R. ( 1993; ). Microbial competition: Escherichia coli mutants that take over stationary phase culture. Science 259, 1757–1760.[CrossRef]
    [Google Scholar]
  54. Zimmer, D. P., Soupene, E., Lee, H. L., Wendisch, V. F., Khodursky, A. B., Peter, B. J. Bender R. A. & Kustu, S. ( 2000; ). Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 97, 14674–14679.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27012-0
Loading
/content/journal/micro/10.1099/mic.0.27012-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error