1887

Abstract

The complex (MAC) encompasses two species, and , which are opportunistic pathogens of humans and animals. The standard method of MAC strain differentiation is serotyping based on a variation in the antigenic glycopeptidolipid (GPL) composition. To elucidate the relationships among serotypes a phylogenetic analysis of 13 reference and clinical strains from 8 serotypes was performed using as markers two genomic regions (890 bp of the gene and 2150 bp spanning the genes) which are associated with the strains' serological properties. Strains belonging to three other known serotypes were not included in the phylogeny inference due to apparent lack of the marker sequences in their genomes, as revealed by PCR and Southern blot analysis. These studies suggest that serotypes prevalent in AIDS patients have multiple origins. In trees inferred from both markers, serotype 1 strains, known to have the simplest and shortest GPLs among all other serotypes, were polyphyletic. Likewise, comparisons of the inferred phylogenies with the molecular typing results imply that the existing tools used in epidemiological studies may be poor estimators of strain relatedness. Additionally, trees inferred from each marker had significantly incongruent topologies due to a well supported alternative placement of strain 2151, suggesting a complex evolutionary history of this genomic region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27007-0
2004-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501699.html?itemId=/content/journal/micro/10.1099/mic.0.27007-0&mimeType=html&fmt=ahah

References

  1. Aspinall G. O., Khare N. K., Sood R. K., Chatterjee D., Rivoire B., Brennan P. J. 1991; Structure of the glycopeptidolipid antigen of serovar 20 of the Mycobacterium avium serocomplex, synthesis of allyl glycosides of the outer di- and tri-saccharide units of the antigens of serovars 14 and 20, and serology of the derived neoglycoproteins. Carbohydr Res 216:357–373
    [Google Scholar]
  2. Bohlson S. S., Strasser J. A., Bower J. J., Schorey J. S. 2001; Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3. Infect Immun 69:7729–7735 [CrossRef]
    [Google Scholar]
  3. Chatterjee D., Khoo K. H. 2001; The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 58:2018–2042 [CrossRef]
    [Google Scholar]
  4. Denner J. C., Tsang A. Y., Chatterjee D., Brennan P. J. 1992; Comprehensive approach to identification of serovars of Mycobacterium avium complex. J Clin Microbiol 30:473–478
    [Google Scholar]
  5. De Smet K. A., Brown I. N., Yates M., Ivanyi J. 1995; Ribosomal internal transcribed spacer sequences are identical among Mycobacterium avium - intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. Microbiology 141:2739–2747 [CrossRef]
    [Google Scholar]
  6. Eckstein T. M., Silbaq F. S., Chatterjee D., Kelly N. J., Brennan P. J., Belisle J. T. 1998; Identification and recombinant expression of a Mycobacterium avium rhamnosyltransferase gene ( rtfA ) involved in glycopeptidolipid biosynthesis. J Bacteriol 180:5567–5573
    [Google Scholar]
  7. Eckstein T. M., Inamine J. M., Lambert M. L., Belisle J. T. 2000; A genetic mechanism for deletion of the ser2 gene cluster and formation of rough morphological variants of Mycobacterium avium . J Bacteriol 182:6177–6182 [CrossRef]
    [Google Scholar]
  8. Eckstein T. M., Belisle J. T., Inamine J. M. 2003; Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2. Microbiology 149:2797–2807 [CrossRef]
    [Google Scholar]
  9. Farris J. S., Kallersjo M., Kluge A. G., Bult C. 1995; Testing significance of incongruence. Cladistics 10:315–319
    [Google Scholar]
  10. Feizabadi M. M., Robertson I. D., Cousins D. V., Dawson D., Chew W., Gilbert G. L., Hampson D. J. 1996; Genetic characterization of Mycobacterium avium isolates recovered from humans and animals in Australia. Epidemiol Infect 116:41–49 [CrossRef]
    [Google Scholar]
  11. Frothingham R., Wilson K. H. 1993; Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol 175:2818–2825
    [Google Scholar]
  12. Guerrero C., Bernasconi C., Burki D., Bodmer T., Telenti A. 1995; A novel insertion element from Mycobacterium avium , IS 1245 , is a specific target for analysis of strain relatedness. J Clin Microbiol 33:304–307
    [Google Scholar]
  13. Hough L., Theobald R. S. 1963; Dealkylation. In Methods in Carbohydrate Chemistry pp  203–206 Edited by Whistler W. L., Wolfrom R. S. New York: Academic Press;
    [Google Scholar]
  14. Hunter S. W., Fujiwara T., Brennan P. J. 1982; Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae . J Biol Chem 257:15072–15078
    [Google Scholar]
  15. Julander I., Hoffner S., Petrini B., Ostlund L. 1996; Multiple serovars of Mycobacterium avium complex in patients with AIDS. Apmis 104:318–320 [CrossRef]
    [Google Scholar]
  16. Khoo K. H., Jarboe E., Barker A., Torrelles J., Kuo C. W., Chatterjee D. 1999; Altered expression profile of the surface glycopeptidolipids in drug-resistant clinical isolates of Mycobacterium avium complex. J Biol Chem 274:9778–9785 [CrossRef]
    [Google Scholar]
  17. Komijn R. E., de Haas P. E., Schneider M. M., Eger T., Nieuwenhuijs J. H., van den Hoek R. J., Bakker D., van Zijd Erveld F. G., van Soolingen D. 1999; Prevalence of Mycobacterium avium in slaughter pigs in The Netherlands and comparison of IS 1245 restriction fragment length polymorphism patterns of porcine and human isolates. J Clin Microbiol 37:1254–1259
    [Google Scholar]
  18. Krzywinska E., Schorey J. S. 2003; Characterization of genetic differences between Mycobacterium avium subsp. avium strains of diverse virulence with a focus on the glycopeptidolipid biosynthesis cluster. Vet Microbiol 91:249–264 [CrossRef]
    [Google Scholar]
  19. Krzywinska E., Krzywinski J., Schorey J. S. 2003; Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium . Microbiology 150:1707–1712
    [Google Scholar]
  20. Leao S. C., Briones M. R., Sircili M. P., Balian S. C., Mores N., Ferreira-Neto J. S. 1999; Identification of two novel Mycobacterium avium allelic variants in pig and human isolates from Brazil by PCR-restriction enzyme analysis. J Clin Microbiol 37:2592–2597
    [Google Scholar]
  21. Maslow J. N., Irani V. R., Lee S. H., Eckstein T. M., Inamine J. M., Belisle J. T. 2003; Biosynthetic specificity of the rhamnosyltransferase gene of Mycobacterium avium serovar 2 as determined by allelic exchange mutagenesis. Microbiology 149:3193–3202 [CrossRef]
    [Google Scholar]
  22. McNeil M., Chatterjee D., Hunter S. W., Brennan P. J. 1989; Mycobacterial glycolipids: isolation, structures, antigenicity, and synthesis of neoantigens. Methods Enzymol 179:215–242
    [Google Scholar]
  23. Mijs W., de Haas P., Rossau R., Van der Laan T., Rigouts L., Portaels F., van Soolingen D. 2002; Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘ M.avium subsp. hominissuis ’ for the human/porcine type of M. avium . Int J Syst Evol Microbiol 52:1505–1518 [CrossRef]
    [Google Scholar]
  24. Philippe H., Douady C. J. 2003; Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6:498–505 [CrossRef]
    [Google Scholar]
  25. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  26. Ritacco V., Kremer K., van der Laan T., Pijnenburg J. E., de Haas P. E., van Soolingen D. 1998; Use of IS 901 and IS 1245 in RFLP typing of Mycobacterium avium complex: relatedness among serovar reference strains, human and animal isolates. Int J Tuberc Lung Dis 2:242–251
    [Google Scholar]
  27. Riviere M., Puzo G. 1992; Use of 1H NMR ROESY for structural determination of O -glycosylated amino acids from a serine-containing glycopeptidolipid antigen. Biochemistry 31:3575–3580 [CrossRef]
    [Google Scholar]
  28. Rogall T., Wolters J., Flohr T., Bottger E. C. 1990; Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium . Int J Syst Bacteriol 40:323–330 [CrossRef]
    [Google Scholar]
  29. Saito H., Tomioka H., Sato K., Tasaka H., Dawson D. J. 1990; Identification of various serovar strains of Mycobacterium avium complex by using DNA probes specific for Mycobacterium avium and Mycobacterium intracellulare . J Clin Microbiol 28:1694–1697
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116 [CrossRef]
    [Google Scholar]
  32. Swanson D. S., Kapur V., Stockbauer K., Pan X., Frothingham R., Musser J. M. 1997; Subspecific differentiation of Mycobacterium avium complex strains by automated sequencing of a region of the gene ( hsp65 ) encoding a 65-kilodalton heat shock protein. Int J Syst Bacteriol 47:414–419 [CrossRef]
    [Google Scholar]
  33. Swofford D. L. 2001 paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0beta Sunderland, MA: Sinauer;
    [Google Scholar]
  34. Telenti A., Marchesi F., Balz M., Bally F., Bottger E. C., Bodmer T. 1993; Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Tsang A. Y., Denner J. C., Brennan P. J., McClatchy J. K. 1992; Clinical and epidemiological importance of typing of Mycobacterium avium complex isolates. J Clin Microbiol 30:479–484
    [Google Scholar]
  37. van Soolingen D., Bauer J., Ritacco V. 8 other authors 1998; IS 1245 restriction fragment length polymorphism typing of Mycobacterium avium isolates: proposal for standardization. J Clin Microbiol 36:3051–3054
    [Google Scholar]
  38. Wasem C. F., McCarthy C. M., Murray L. W. 1991; Multilocus enzyme electrophoresis analysis of the Mycobacterium avium complex and other mycobacteria. J Clin Microbiol 29:264–271
    [Google Scholar]
  39. Wayne L. G., Sramek H. A. 1992; Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev 5:1–25
    [Google Scholar]
  40. Yakrus M. A., Good R. C. 1990; Geographic distribution, frequency, and specimen source of Mycobacterium avium complex serotypes isolated from patients with acquired immunodeficiency syndrome. J Clin Microbiol 28:926–929
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27007-0
Loading
/content/journal/micro/10.1099/mic.0.27007-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error