1887

Abstract

The complex (MAC) encompasses two species, and , which are opportunistic pathogens of humans and animals. The standard method of MAC strain differentiation is serotyping based on a variation in the antigenic glycopeptidolipid (GPL) composition. To elucidate the relationships among serotypes a phylogenetic analysis of 13 reference and clinical strains from 8 serotypes was performed using as markers two genomic regions (890 bp of the gene and 2150 bp spanning the genes) which are associated with the strains' serological properties. Strains belonging to three other known serotypes were not included in the phylogeny inference due to apparent lack of the marker sequences in their genomes, as revealed by PCR and Southern blot analysis. These studies suggest that serotypes prevalent in AIDS patients have multiple origins. In trees inferred from both markers, serotype 1 strains, known to have the simplest and shortest GPLs among all other serotypes, were polyphyletic. Likewise, comparisons of the inferred phylogenies with the molecular typing results imply that the existing tools used in epidemiological studies may be poor estimators of strain relatedness. Additionally, trees inferred from each marker had significantly incongruent topologies due to a well supported alternative placement of strain 2151, suggesting a complex evolutionary history of this genomic region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27007-0
2004-06-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501699.html?itemId=/content/journal/micro/10.1099/mic.0.27007-0&mimeType=html&fmt=ahah

References

  1. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and expression profiling. Mol Microbiol43:717–731[CrossRef]
    [Google Scholar]
  2. Bogdan J. A., Nazario-Larrieu J., Sarwar J., Alexander P., Blake M. S.. 2001; Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine. Infect Immun69:6823–6830[CrossRef]
    [Google Scholar]
  3. Britton W. J., Roche P. W., Winter N.. 1994; Mechanisms of persistence of mycobacteria. Trends Microbiol2:284–288[CrossRef]
    [Google Scholar]
  4. Buchmeier N. A., Newton G. L., Koledin T., Fahey R. C.. 2003; Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol47:1723–1732[CrossRef]
    [Google Scholar]
  5. Camacho L. R., Constant P., Raynaud C., Triccas J. A., Gicquel B., Guilhot C., Lanéelle M. A., Daffé M.. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem276:19845–19854[CrossRef]
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J..39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  7. Falcone V., Bassey E., Collins F., Jacobs W. Jr. 1995; The immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiology141:1239–1245[CrossRef]
    [Google Scholar]
  8. Goren M. B.. 1970; Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta210:116–126[CrossRef]
    [Google Scholar]
  9. Goren M. B., Armstrong J. A., D'Arcy Hart P., Young M. R.. 1976; Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A73:2510–2514[CrossRef]
    [Google Scholar]
  10. Hummerjohann J., Kuttel E., Quadroni M., Ragaller J., Leisinger T., Kertesz M. A.. 1998; Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology144:1375–1386[CrossRef]
    [Google Scholar]
  11. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A.. 1968; The control of sulphate reduction in Escherichia coli by O-acetyl-l-serine. Biochem J107:51–53
    [Google Scholar]
  12. Lestrate P., Delrue R. M., Danese I..7 other authors 2000; Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol38:543–551[CrossRef]
    [Google Scholar]
  13. Leyh T. S.. 1993; The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol28:515–542[CrossRef]
    [Google Scholar]
  14. Leyh T. S., Suo Y.. 1992; GTPase-mediated activation of ATP sulfurylase. J Biol Chem267:542–545
    [Google Scholar]
  15. Liu C., Martin E., Leyh T. S.. 1994; GTPase activation of ATP sulfurylase: the mechanism. Biochemistry33:2042–2047[CrossRef]
    [Google Scholar]
  16. Middlebrook G., Coleman C. M., Schaefer W. B.. 1959; Sulfolipids from virulent tubercle bacilli. Proc Natl Acad Sci U S A45:1801–1804[CrossRef]
    [Google Scholar]
  17. Pabst M. J., Gross J. M., Bronza J. P., Goren M. B.. 1988; Inhibition of macrophage priming by sulfatide of Mycobacterium tuberculosis. J Immunol140:634–640
    [Google Scholar]
  18. Rawat M., Newton G. L., Ko M., Martinez G. J., Fahey R. C., Av-Gay Y.. 2002; Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother46:3348–3355[CrossRef]
    [Google Scholar]
  19. Rousseau C., Turner O. C., Rush E..7 other authors 2003; Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect Immun71:4684–4690[CrossRef]
    [Google Scholar]
  20. Satishchandran C., Markham G. D.. 1989; Adenosine-5′-phosphosulfate kinase from Escherichia coli K12. Purification, characterization, and identification of a phosphorylated enzyme intermediate. J Biol Chem264:15012–15021
    [Google Scholar]
  21. Schwedock J. S., Liu C., Leyh T. S., Long S. R.. 1994; Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol176:7055–7064
    [Google Scholar]
  22. Triccas J. A., Gicquel B.. 2000; Life on the inside: probing Mycobacterium tuberculosis gene expression during infection. Immunol Cell Biol78:311–317[CrossRef]
    [Google Scholar]
  23. Triccas J. A., Gicquel B.. 2001; Analysis of stress- and host cell-induced expression of the Mycobacterium tuberculosis inorganic pyrophosphatase. BMC Microbiol1:3[CrossRef]
    [Google Scholar]
  24. Triccas J. A., Berthet F. X., Pelicic V., Gicquel B.. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology145:2923–2930
    [Google Scholar]
  25. Wang R., Liu C., Leyh T. S.. 1995; Allosteric regulation of the ATP sulfurylase associated GTPase. Biochemistry34:490–495[CrossRef]
    [Google Scholar]
  26. Williams S. J., Senaratne R. H., Mougous J. D., Riley L. W., Bertozzi C. R.. 2002; 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem277:32606–32615[CrossRef]
    [Google Scholar]
  27. Zhang H., Varlamova O., Vargas F. M., Falany C. N., Leyh T. S., Varmalova O.. 1998; Sulfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem273:10888–10892[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27007-0
Loading
/content/journal/micro/10.1099/mic.0.27007-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error