Functional analysis of the gene family of during anaerobic growth on glucose: the NADP-dependent Ald6p and Ald5p isoforms play a major role in acetate formation Free

Abstract

In , acetate is formed by acetaldehyde dehydrogenase (ACDH), a key enzyme of the pyruvate dehydrogenase (PDH) bypass, which fulfils the essential task of generating acetyl-CoA in the cytosol. The role of the five members of the ACDH family ( genes) was investigated during anaerobic growth on glucose. Single and multiple Δ mutants were generated in the wine-yeast-derived V5 and laboratory CEN.PK strains and analysed under standard (YPD 5 % glucose) and wine (MS 20 % glucose) fermentation conditions. The deletion of and decreased acetate formation in both strains, demonstrating for the first time that the mitochondrial Ald5p isoform is involved in the biosynthesis of acetate during anaerobic growth on glucose. Acetate production of the Δ mutant was slightly decreased in the CEN.PK strain during growth on YPD only. In contrast, the deletion of or had no effect on acetate production. The absence of Ald6p was compensated by the mitochondrial isoforms and this involves the transcriptional activation of . Consistent with this, growth retardation was observed in ΔΔ, and this effect was amplified by the additional deletion of . A Δ null mutant, devoid of ACDH activity, was viable and produced similar levels of acetate to the ΔΔΔ strain, excluding a role of Ald2p and Ald3p. Thus, acetate is mainly produced by the cytosolic PDH bypass via Ald6p and by a mitochondrial route involving Ald5p. An unknown alternative pathway can compensate for the loss of Ald6p, Ald4p and Ald5p.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26999-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502209.html?itemId=/content/journal/micro/10.1099/mic.0.26999-0&mimeType=html&fmt=ahah

References

  1. Akhtar N., Blomberg A., Adler L. 1997; Osmoregulation and protein expression in a pbs2 mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett 403:173–180 [CrossRef]
    [Google Scholar]
  2. Bely M., Sablayrolles J. M., Barre P. 1990; Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions. J Ferm Bioeng 70:246–252 [CrossRef]
    [Google Scholar]
  3. Blomberg A., Adler L. 1989; Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092
    [Google Scholar]
  4. Boubekeur S., Bunoust O., Camougrand N., Castroviejo M., Rigoulet M., Guerin B. 1999; A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J Biol Chem 274:21044–21048 [CrossRef]
    [Google Scholar]
  5. Boubekeur S., Camougrand N., Bunoust O., Rigoulet M., Guerin B. 2001; Participation of acetaldehyde dehydrogenase in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae. Eur J Biochem 268:5057–5065 [CrossRef]
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Buu L. M., Chen Y. C., Lee F. J. 2003; Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae. J Biol Chem 278:17203–17209 [CrossRef]
    [Google Scholar]
  8. Flikweert M. T., van der Zanden L., Janssen W. M., Steensma H. Y., Van Dijken J. P., Pronk J. T. 1996; Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257 [CrossRef]
    [Google Scholar]
  9. Grabowska D., Chelstowska A. 2003; The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984–13988 [CrossRef]
    [Google Scholar]
  10. Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J. 1996; A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524 [CrossRef]
    [Google Scholar]
  11. Jacobson M. K., Bernofsky C. 1974; Mitochondrial acetaldehyde dehydrogenase from Saccharomyces cerevisiae. Biochim Biophys Acta 350:277–291 [CrossRef]
    [Google Scholar]
  12. Kurita O., Nishida Y. 1999; Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae. FEMS Microbiol Lett 181:281–287 [CrossRef]
    [Google Scholar]
  13. Llorente N., Nunez de Castro I. 1977; Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases. Rev Esp Fisiol 33:145–152
    [Google Scholar]
  14. Makuc J., Paiva S., Schauen M., Casal M., Leao C., Boles E., Krämer R., André B. 2001; The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18:1131–1143 [CrossRef]
    [Google Scholar]
  15. Meaden P. G., Dickinson F. M., Mifsud A., Tessier W., Westwater J., Bussey H., Midgley M. 1997; The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. Yeast 13:1319–1327 [CrossRef]
    [Google Scholar]
  16. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  17. Navarro-Avino J. P., Prasad R., Miralles V. J., Benito R. M., Serrano R. 1999; A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15:829–842 [CrossRef]
    [Google Scholar]
  18. Norbeck J., Blomberg A. 1997; Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1·4 M NaCl. J Biol Chem 272:5544–5554 [CrossRef]
    [Google Scholar]
  19. Norbeck J., Blomberg A. 2000; The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16:121–137 [CrossRef]
    [Google Scholar]
  20. Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. 1989; Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477
    [Google Scholar]
  21. Pronk J. T., Steensma H. Y., Van Dijken J. 1996; Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633 [CrossRef]
    [Google Scholar]
  22. Remize F., Andrieu E., Dequin S. 2000; Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenase Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159 [CrossRef]
    [Google Scholar]
  23. Remize F., Barnavon L., Dequin S. 2001; Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 3:301–312 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  25. Schiestl R. H., Gietz R. D. 1989; High efficiency transformation of intact cells using single stranded nucleic acid as carrier. Curr Genet 16:339–346 [CrossRef]
    [Google Scholar]
  26. Seegmiller J. E. 1953; Triphosphopyridine nucleotide-linked aldehyde dehydrogenase from yeast. J Biol Chem 201:629–637
    [Google Scholar]
  27. Steinbüchel A., Schlegel H. G. 1984; A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 141:555–564 [CrossRef]
    [Google Scholar]
  28. Svensson S., Some M., Cronholm T., Lundsjö A., Helander A., Höög J. O. 1999; Activities of human alcohol dehydrogenases in the metabolic pathways of ethanol and serotonin. Eur J Biochem 262:324–329 [CrossRef]
    [Google Scholar]
  29. Tessier W. D., Meaden P. G., Dickinson F. M., Midgley M. 1998; Identification and disruption of the gene encoding the K+-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae. FEMS Microbiol Lett 164:29–34 [CrossRef]
    [Google Scholar]
  30. Tessier W., Dickinson F. M., Midgley M. 1999; The roles of acetaldehyde dehydrogenases in Saccharomyces cerevisiae. Adv Exp Med Biol 463:243–247
    [Google Scholar]
  31. Wang X., Bai Y., Ni L., Weiner H. 1997; Saccharomyces cerevisiae aldehyde dehydrogenases – identification and expression. Adv Exp Med Biol 414:277–280
    [Google Scholar]
  32. Wang X., Mann C. J., Bai Y., Ni L., Weiner H. 1998; Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180:822–830
    [Google Scholar]
  33. White W. H., Skatrud P. L., Xue Z., Toyn J. H. 2003; Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae. Genetics 163:69–77
    [Google Scholar]
  34. Winberg J. O., McKinley-McKee J. S. 1998; Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation. Biochem J 329:561–570
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26999-0
Loading
/content/journal/micro/10.1099/mic.0.26999-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed