1887

Abstract

SseA, a key virulence determinant, is a small, basic pI protein encoded within the pathogenicity island 2 and serves as a type III secretion system chaperone for SseB and SseD. Both SseA partners are subunits of the surface-localized translocon module that delivers effectors into the host cell; SseB is predicted to compose the translocon sheath and SseD is a putative translocon pore subunit. In this study, SseA molecular interactions with its partners were characterized further. Yeast two-hybrid screens indicate that SseA binding requires a C-terminal domain within both partners. An additional central domain within SseD was found to influence binding. The SseA-binding region within SseB was found to encompass a predicted amphipathic helix of a type participating in coiled-coil interactions that are implicated in the assembly of translocon sheaths. Deletions that impinge upon this putative coiled-coiled domain prevent SseA binding, suggesting that SseA occupies a portion of the coiled-coil. SseA occupancy of this motif is envisioned to be sufficient to prevent premature SseB self-association inside bacteria. Domain mapping on the chaperone was also performed. A deletion of the SseA N-terminus, or site-directed mutations within this region, allowed stabilization of SseB, but its export was disrupted. Therefore, the N-terminus of SseA provides a function that is essential for SseB export, but dispensable for partner binding and stabilization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26997-0
2004-07-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502055.html?itemId=/content/journal/micro/10.1099/mic.0.26997-0&mimeType=html&fmt=ahah

References

  1. Adams, A., Gottschling, D. E., Kaiser, C. A. & Stearns, T. ( 1997; ). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. ( 2001; ). Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol 308, 221–229.[CrossRef]
    [Google Scholar]
  3. Bennett, J. C. Q. & Hughes, C. ( 2000; ). From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol 8, 202–204.[CrossRef]
    [Google Scholar]
  4. Beuzón, C. R., Banks, G., Deiwick, J., Hensel, M. & Holden, D. W. ( 1999; ). pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol Microbiol 33, 806–816.[CrossRef]
    [Google Scholar]
  5. Cheng, L. W. & Schneewind, O. ( 1999; ). Yersinia enterocolitica type III secretion. On the role of SycE in targeting YopE into HeLa cells. J Biol Chem 274, 22102–22108.[CrossRef]
    [Google Scholar]
  6. Coombes, B. K., Brown, N. F., Kujat-Choy, S., Vallance, B. A. & Finlay, B. B. ( 2003; ). SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes Infect 5, 561–570.[CrossRef]
    [Google Scholar]
  7. Cornelis, G. R. ( 2002; ). The Yersinia YSC-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3, 742–752.[CrossRef]
    [Google Scholar]
  8. Cornelis, G. R. & Van Gijsegem, F. ( 2000; ). Assembly and function of type III secretory systems. Annu Rev Microbiol 54, 735–774.[CrossRef]
    [Google Scholar]
  9. Creasey, E. A., Friedberg, D., Shaw, R. K., Umanski, T., Knutton, S., Rosenshine, I. & Frankel, G. ( 2003; ). CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149, 3639–3647.[CrossRef]
    [Google Scholar]
  10. Daniell, S. J., Takahashi, N., Wilson, R. & 7 other authors ( 2001; ). The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3, 865–871.[CrossRef]
    [Google Scholar]
  11. Daniell, S. J., Kocsis, E., Morris, E., Knutton, S., Booy, F. P. & Frankel, G. ( 2003; ). 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol 49, 301–308.[CrossRef]
    [Google Scholar]
  12. Davis, C. R., Richman, T. J., Deliduka, S. B., Blaisdell, J. O., Collins, C. C. & Johnson, D. I. ( 1998; ). Analysis of the mechanisms of action of the Saccharomyces cerevisiae dominant lethal cdc42G12V and dominant negative cdc42D118A mutations. J Biol Chem 273, 849–858.[CrossRef]
    [Google Scholar]
  13. Delahay, R. M. & Frankel, G. ( 2002; ). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 45, 905–916.[CrossRef]
    [Google Scholar]
  14. Delahay, R. M., Knutton, S., Shaw, R. K., Hartland, E. L., Pallen, M. J. & Frankel, G. ( 1999; ). The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J Biol Chem 274, 35969–35974.[CrossRef]
    [Google Scholar]
  15. Elliott, S. J., Wainwright, L. A., McDaniel, T. K., Jarvis, K. G., Deng, Y. K., Lai, L. C., McNamara, B. P., Donnenberg, M. S. & Kaper, J. B. ( 1998; ). The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28, 1–4.
    [Google Scholar]
  16. Estojak, J., Brent, R. & Golemis, E. A. ( 1995; ). Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15, 5820–5829.
    [Google Scholar]
  17. Fashena, S. J., Serebriiskii, I. G. & Golemis, E. A. ( 2000; ). LexA-based two-hybrid systems. Methods Enzymol 328, 14–26.
    [Google Scholar]
  18. Foultier, B., Troisfontaines, P., Muller, S., Opperdoes, F. R. & Cornelis, G. R. ( 2002; ). Characterization of the ysa pathogenicity locus in the chromosome of Yersinia entercolitica and phylogeny analysis of type III secretion systems. J Mol Evol 55, 37–51.[CrossRef]
    [Google Scholar]
  19. Francis, M. S., Aili, M., Wiklund, M. L. & Wolf-Watz, H. ( 2000; ). A study of the YopD-LcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD. Mol Microbiol 38, 85–102.[CrossRef]
    [Google Scholar]
  20. Gauthier, A. & Finlay, B. B. ( 2003; ). Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 185, 6747–6755.[CrossRef]
    [Google Scholar]
  21. Guy, R. L., Gonias, L. A. & Stein, M. A. ( 2000; ). Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms-aroE intragenic region. Mol Microbiol 37, 1417–1435.[CrossRef]
    [Google Scholar]
  22. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4131.
    [Google Scholar]
  23. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. ( 1993; ). Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.[CrossRef]
    [Google Scholar]
  24. Hartland, E. L., Daniell, S. J., Delahay, R. M., Neves, B. C., Wallis, T., Shaw, R. K., Hale, C., Knutton, S. & Frankel, G. ( 2000; ). The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Mol Microbiol 35, 1483–1492.
    [Google Scholar]
  25. Hensel, M., Shea, J. E., Waterman, S. R. & 7 other authors ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  26. Holden, D. W. ( 2002; ). Trafficking of the Salmonella vacuole in macrophages. Traffic 3, 161–169.[CrossRef]
    [Google Scholar]
  27. Ide, T., Laarmann, S., Greune, L., Schillers, H., Oberleithner, H. & Schmidt, M. A. ( 2001; ). Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3, 669–679.[CrossRef]
    [Google Scholar]
  28. Klein, J. R. & Jones, B. D. ( 2001; ). Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun 69, 737–743.[CrossRef]
    [Google Scholar]
  29. Knodler, L. A. & Steele-Mortimer, O. ( 2003; ). Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4, 587–599.[CrossRef]
    [Google Scholar]
  30. Kolonin, M. G., Zhong, J. & Finley, R. L. ( 2000; ). Interaction mating methods in two-hybrid systems. Methods Enzymol 328, 26–46.
    [Google Scholar]
  31. Lupas, A., Van Dyke, M. & Stock, J. ( 1991; ). Predicting coiled coils from protein sequences. Science 252, 1162–1164.[CrossRef]
    [Google Scholar]
  32. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Laboratory.
  33. Neyt, C. & Cornelis, G. R. ( 1999; ). Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol Microbiol 3, 143–156.
    [Google Scholar]
  34. Nikolaus, T., Deiwick, J., Rappl, C., Freeman, J. A., Schroder, W., Miller, S. I. & Hensel, M. ( 2001; ). SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183, 6036–6045.[CrossRef]
    [Google Scholar]
  35. Ozin, A., Claret, L., Uvray, F. & Hughes, C. ( 2003; ). The FliS chaperone selectively binds the disordered flagellin C-termina D0 domain central to polymerization. FEMS Microbiol Lett 219, 219–224.[CrossRef]
    [Google Scholar]
  36. Page, A.-L., Fromont-Racine, M., Sansonetti, P., Legrain, P. & Parsot, C. ( 2001; ). Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Mol Microbiol 42, 1133–1145.[CrossRef]
    [Google Scholar]
  37. Parsot, C., Hamiaux, C. & Page, A.-L. ( 2003; ). The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 6, 7–13.[CrossRef]
    [Google Scholar]
  38. Richman, T. J., Sawyer, M. M. & Johnson, D. I. ( 1999; ). The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J Biol Chem 274, 16861–16870.[CrossRef]
    [Google Scholar]
  39. Ruiz-Albert, J., Mundy, R., Yu, X. J., Beuzón, C. R. & Holden, D. W. ( 2003; ). SseA is a chaperone for the SseB and SseD translocon components of the Salmonella pathogenicity-island-2-encoded type III secretion system. Microbiology 149, 1103–1111.[CrossRef]
    [Google Scholar]
  40. Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C. & Abe, A. ( 2001; ). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98, 11638–11643.[CrossRef]
    [Google Scholar]
  41. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. ( 1996; ). Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20, 151–164.[CrossRef]
    [Google Scholar]
  42. Suvarnapunya, A. E., Lagassé, H. A. D. & Stein, M. A. ( 2003; ). The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol 48, 549–559.[CrossRef]
    [Google Scholar]
  43. Thomas, J., Stafford, G. P. & Hughes, C. ( 2004; ). Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A 101, 3945–3950.[CrossRef]
    [Google Scholar]
  44. Wainwright, L. A. & Kaper, J. B. ( 1998; ). EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27, 1247–1260.[CrossRef]
    [Google Scholar]
  45. Wolf, E., Kim, P. S. & Berger, B. ( 1997; ). MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6, 1179–1189.[CrossRef]
    [Google Scholar]
  46. Yaffe, M. P. & Schatz, G. ( 1984; ). Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci U S A 81, 4819–4823.[CrossRef]
    [Google Scholar]
  47. Zurawski, D. V. & Stein, M. A. ( 2003; ). SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon. Mol Microbiol 47, 1341–1351.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26997-0
Loading
/content/journal/micro/10.1099/mic.0.26997-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error