1887

Abstract

IMRU 3455 contains two large linear plasmids designated pSLV45 (45 kb) and pSLV195 (195 kb). A cosmid, pSPRX604, containing 42 kb from pSLV45 was cloned and sequenced. pSLV45 was tagged with a hygromycin-resistance marker by homologous recombination to generate the derivatives pSLV45.680 and pSLV45.681. An apramycin-resistance marker was introduced into IMRU 467 using the pSPR910 integration vector to yield the recipient strain SPW910. The self-transmissible nature of pSLV45 was determined by transfer of pSLV45.680 and pSLV45.681 from the donor strains SPW680 and SPW681 into the recipient strain SPW910. Southern analysis indicated the presence of hygromycin- and pSLV45-hybridizing sequences within SPW910 exconjugants. PFGE analysis confirmed pSLV45.680 and pSLV45.681 were transferred intact and formed freely replicating linear plasmids. Sequence analysis of pSPRX604 revealed genes predicted to be involved in plasmid transfer, partitioning and regulation. The transfer of the linear plasmid pSLV45 from IMRU 3455 into IMRU 467 may allow the development of pSLV45 as an actinomycete-to-actinomycete conjugative shuttle vector.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26994-0
2004-06-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501819.html?itemId=/content/journal/micro/10.1099/mic.0.26994-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. C., Devlin, D. J., Hewitt, D. D., Horan, A. C. & Hosted, T. J. ( 2003; ). Development of the Micromonospora carbonacea var. africana ATCC 39149 bacteriophage pMLP1 integrase for site-specific integration in Micromonospora spp. Microbiology 149, 2443–2453.[CrossRef]
    [Google Scholar]
  2. Baltz, R. H. & Matsushima, P. ( 1983; ). Advances in protoplast fusion and transformation in Streptomyces. Experientia Suppl 46, 143–148.
    [Google Scholar]
  3. Bao, K. & Cohen, S. N. ( 2001; ). Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev 15, 1518–1527.[CrossRef]
    [Google Scholar]
  4. Bao, K. & Cohen, S. N. ( 2003; ). Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 17, 774–785.[CrossRef]
    [Google Scholar]
  5. Beyazova, M. & Lechevalier, M. P. ( 1993; ). Taxonomic utility of restriction endonuclease fingerprinting of large DNA fragments from Streptomyces strains. Int J Syst Bacteriol 43, 674–682.[CrossRef]
    [Google Scholar]
  6. Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N. & Hopwood, D. A. ( 1981; ). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184, 230–240.
    [Google Scholar]
  7. Brolle, D. F., Pape, H., Hopwood, D. A. & Kieser, T. ( 1993; ). Analysis of the transfer region of the Streptomyces plasmid SCP2. Mol Microbiol 10, 157–170.[CrossRef]
    [Google Scholar]
  8. Chang, P. C. & Cohen, S. N. ( 1994; ). Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265, 952–954.[CrossRef]
    [Google Scholar]
  9. Chang, P. C., Kim, E. S. & Cohen, S. N. ( 1996; ). Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin. Mol Microbiol 22, 789–800.[CrossRef]
    [Google Scholar]
  10. Chen, C. W., Yu, T. W., Lin, Y. S., Kieser, H. M. & Hopwood, D. A. ( 1993; ). The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol Microbiol 7, 925–932.[CrossRef]
    [Google Scholar]
  11. Cooper, L. P. & Dryden, D. T. ( 1994; ). The domains of a type I DNA methyltransferase. Interactions and role in recognition of DNA methylation. J Mol Biol 236, 1011–1021.[CrossRef]
    [Google Scholar]
  12. Denis-Larose, C., Bergeron, H., Labbe, D., Greer, C. W., Hawari, J., Grossman, M. J., Sankey, B. M. & Lau, P. C. ( 1998; ). Characterization of the basic replicon of Rhodococcus plasmid pSOX and development of a Rhodococcus-Escherichia coli shuttle vector. Appl Environ Microbiol 64, 4363–4367.
    [Google Scholar]
  13. Dougherty, B. A., Hill, C., Weidman, J. F., Richardson, D. R., Venter, J. C. & Ross, R. P. ( 1998; ). Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 29, 1029–1038.[CrossRef]
    [Google Scholar]
  14. Evans, M., Kaczmarek, F. S., Stutzman-Engwall, K. & Dyson, P. ( 1994; ). Characterization of a Streptomyces-lividans-type site-specific DNA modification system in the avermectin-producer Streptomyces avermitilis permits investigation of two novel giant linear plasmids, pSA1 and pSA2. Microbiology 140, 1367–1371.[CrossRef]
    [Google Scholar]
  15. Flett, F., Mersinias, V. & Smith, C. P. ( 1997; ). High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155, 223–229.[CrossRef]
    [Google Scholar]
  16. Gravius, B., Glocker, D., Pigac, J., Pandza, K., Hranueli, D. & Cullum, J. ( 1994; ). The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140, 2271–2277.[CrossRef]
    [Google Scholar]
  17. Griffiths, A. J. ( 1995; ). Natural plasmids of filamentous fungi. Microbiol Rev 59, 673–685.
    [Google Scholar]
  18. Grohmann, E., Muth, G. & Espinosa, M. ( 2003; ). Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67, 277–301.[CrossRef]
    [Google Scholar]
  19. Hagege, J., Pernodet, J. L., Sezonov, G., Gerbaud, C., Friedmann, A. & Guerineau, M. ( 1993; ). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol 175, 5529–5538.
    [Google Scholar]
  20. Hayakawa, T., Tanaka, T., Sakaguchi, K., Otake, N. & Yonehara, H. ( 1979; ). A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. J Gen Appl Microbiol 25, 225–260.
    [Google Scholar]
  21. Hayes, F. ( 2000; ). The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Mol Microbiol 37, 528–541.
    [Google Scholar]
  22. Hinnebusch, J. & Tilly, K. ( 1993; ). Linear plasmids and chromosomes in bacteria. Mol Microbiol 10, 917–922.[CrossRef]
    [Google Scholar]
  23. Hirochika, H. & Sakaguchi, K. ( 1982; ). Analysis of linear plasmids isolated from Streptomyces: association of protein with the ends of the plasmid DNA. Plasmid 7, 59–65.[CrossRef]
    [Google Scholar]
  24. Hirochika, H., Nakamura, K. & Sakaguchi, K. ( 1984; ). A linear DNA plasmid from Streptomyces rochei with an inverted terminal repetition of 614 base pairs. EMBO J 3, 761–766.
    [Google Scholar]
  25. Hopwood, D. A., Lydiate, D. J., Malpartida, F. & Wright, H. M. ( 1985; ). Conjugative sex plasmids of Streptomyces. Basic Life Sci 30, 615–634.
    [Google Scholar]
  26. Hosted, T. J., Rochefort, D. A. & Benson, D. R. ( 1993; ). Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1. J Bacteriol 175, 3679–3684.
    [Google Scholar]
  27. Hosted, T. J., Wang, T. X., Alexander, D. C. & Horan, A. C. ( 2001; ). Characterization of the biosynthetic gene cluster for the oligosaccharide antibiotic, Evernimicin, in Micromonospora carbonacea var. africana ATCC39149. J Ind Microbiol Biotechnol 27, 386–392.[CrossRef]
    [Google Scholar]
  28. Huang, C. H., Chen, C. Y., Tsai, H. H., Chen, C., Lin, Y. S. & Chen, C. W. ( 2003; ). Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 47, 1563–1576.[CrossRef]
    [Google Scholar]
  29. Kalkus, J., Reh, M. & Schlegel, H. G. ( 1990; ). Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J Gen Microbiol 136, 1145–1151.[CrossRef]
    [Google Scholar]
  30. Keen, C. L., Mendelovitz, S., Cohen, G., Aharonowitz, Y. & Roy, K. L. ( 1988; ). Isolation and characterization of a linear DNA plasmid from Streptomyces clavuligerus. Mol Gen Genet 212, 172–176.[CrossRef]
    [Google Scholar]
  31. Kendall, K. J. & Cohen, S. N. ( 1988; ). Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol 170, 4634–4651.
    [Google Scholar]
  32. Kieser, T., Hopwood, D. A., Wright, H. M. & Thompson, C. J. ( 1982; ). pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185, 223–228.[CrossRef]
    [Google Scholar]
  33. Kinashi, H. & Shimaji, M. ( 1987; ). Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot (Tokyo) 40, 913–916.[CrossRef]
    [Google Scholar]
  34. Kinashi, H. & Shimaji-Murayama, M. ( 1991; ). Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor. J Bacteriol 173, 1523–1529.
    [Google Scholar]
  35. Kinashi, H., Shimaji-Murayama, M. & Hanafusa, T. ( 1992; ). Integration of SCP1, a giant linear plasmid, into the Streptomyces coelicolor chromosome. Gene 115, 35–41.[CrossRef]
    [Google Scholar]
  36. Kinashi, H., Mori, E., Hatani, A. & Nimi, O. ( 1994; ). Isolation and characterization of linear plasmids from lankacidin-producing Streptomyces species. J Antibiot (Tokyo) 47, 1447–1455.[CrossRef]
    [Google Scholar]
  37. Kinoshita-Iramina, C., Kitahara, M., Doi, K. & Ogata, S. ( 1997; ). A conjugative linear plasmid in Streptomyces laurentii ATCC31255. Biosci Biotechnol Biochem 61, 1469–1473.[CrossRef]
    [Google Scholar]
  38. Lavire, C., Louis, D., Perriere, G., Briolay, J., Normand, P. & Cournoyer, B. ( 2001; ). Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-fixing actinomycete Frankia. FEMS Microbiol Lett 197, 111–116.[CrossRef]
    [Google Scholar]
  39. Lezhava, A., Mizukami, T., Kajitani, T., Kameoka, D., Redenbach, M., Shinkawa, H., Nimi, O. & Kinashi, H. ( 1995; ). Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol 177, 6492–6498.
    [Google Scholar]
  40. Lin, Y. S., Kieser, H. M., Hopwood, D. A. & Chen, C. W. ( 1993; ). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10, 923–933.[CrossRef]
    [Google Scholar]
  41. Maas, R. M., Gotz, J., Wohlleben, W. & Muth, G. ( 1998; ). The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer functions from other Streptomyces rolling-circle-type plasmids. Microbiology 144, 2809–2817.[CrossRef]
    [Google Scholar]
  42. Meinhardt, F., Kempken, F., Kamper, J. & Esser, K. ( 1990; ). Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17, 89–95.[CrossRef]
    [Google Scholar]
  43. Muth, G., Farr, M., Hartmann, V. & Wohlleben, W. ( 1995; ). Streptomyces ghanaensis plasmid pSG5: nucleotide sequence analysis of the self-transmissible minimal replicon and characterization of the replication mode. Plasmid 33, 113–126.[CrossRef]
    [Google Scholar]
  44. Nagy, I., Schoofs, G., Compernolle, F., Proost, P., Vanderleyden, J. & de Mot, R. ( 1995; ). Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177, 676–687.
    [Google Scholar]
  45. Pandza, S., Biukovic, G., Paravic, A., Dadbin, A., Cullum, J. & Hranueli, D. ( 1998; ). Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends. Mol Microbiol 28, 1165–1176.[CrossRef]
    [Google Scholar]
  46. Pernodet, J. L., Simonet, J. M. & Guerineau, M. ( 1984; ). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet 198, 35–41.[CrossRef]
    [Google Scholar]
  47. Pettis, G. S. & Cohen, S. N. ( 1994; ). Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol Microbiol 13, 955–964.[CrossRef]
    [Google Scholar]
  48. Ravel, J., Wellington, E. M. & Hill, R. T. ( 2000; ). Interspecific transfer of Streptomyces giant linear plasmids in sterile amended soil microcosms. Appl Environ Microbiol 66, 529–534.[CrossRef]
    [Google Scholar]
  49. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77–96.[CrossRef]
    [Google Scholar]
  50. Redenbach, M., Bibb, M., Gust, B., Seitz, B. & Spychaj, A. ( 1999; ). The linear plasmid SCP1 of Streptomyces coelicolor A3(2) possesses a centrally located replication origin and shows significant homology to the transposon Tn4811. Plasmid 42, 174–185.[CrossRef]
    [Google Scholar]
  51. Reeves, A. R., Post, D. A. & Vanden Boom, T. J. ( 1998; ). Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea. Microbiology 144, 2151–2159.[CrossRef]
    [Google Scholar]
  52. Rohe, M., Schrunder, J., Tudzynski, P. & Meinhardt, F. ( 1992; ). Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21, 173–176.[CrossRef]
    [Google Scholar]
  53. Shiffman, D. & Cohen, S. N. ( 1992; ). Reconstruction of a Streptomyces linear replicon from separately cloned DNA fragments: existence of a cryptic origin of circular replication within the linear plasmid. Proc Natl Acad Sci U S A 89, 6129–6133.[CrossRef]
    [Google Scholar]
  54. Volff, J. N. & Altenbuchner, J. ( 2000; ). A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol Lett 186, 143–150.[CrossRef]
    [Google Scholar]
  55. Vrijbloed, J. W., Madon, J. & Dijkhuizen, L. ( 1995a; ). Transformation of the methylotrophic actinomycete Amycolatopis methanolica with plasmid DNA: stimulatory effect of a pMEA300-encoded gene. Plasmid 34, 96–104.[CrossRef]
    [Google Scholar]
  56. Vrijbloed, J. W., van der Put, N. M. & Dijkhuizen, L. ( 1995b; ). Identification and functional analysis of the transfer region of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. J Bacteriol 177, 6499–6505.
    [Google Scholar]
  57. Wright, F. & Bibb, M. J. ( 1992; ). Codon usage in the G+C-rich Streptomyces genome. Gene 113, 55–65.[CrossRef]
    [Google Scholar]
  58. Yamasaki, M., Miyashita, K., Cullum, J. & Kinashi, H. ( 2000; ). A complex insertion sequence cluster at a point of interaction between the linear plasmid SCP1 and the linear chromosome of Streptomyces coelicolor A3(2). J Bacteriol 182, 3104–3110.[CrossRef]
    [Google Scholar]
  59. Yamasaki, M., Redenbach, M. & Kinashi, H. ( 2001; ). Integrated structures of the linear plasmid SCP1 in two bidirectional donor strains of Streptomyces coelicolor A3(2). Mol Gen Genet 264, 634–642.[CrossRef]
    [Google Scholar]
  60. Yang, C. C., Huang, C. H., Li, C. Y., Tsay, Y. G., Lee, S. C. & Chen, C. W. ( 2002; ). The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol Microbiol 43, 297–305.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26994-0
Loading
/content/journal/micro/10.1099/mic.0.26994-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error