1887

Abstract

The yeast species , an opportunistic pathogen, exhibits genetic and genomic heterogeneity. To assess the polymorphism at the level of mitochondrial DNA (mtDNA), the organization of the mitochondrial genome in strains belonging to the three variant groups of this species was investigated. Although these analyses revealed a group-specific restriction fragment pattern of mtDNA, strains belonging to different groups appear to have similar genes in the same gene order. An extensive survey of isolates uncovered surprising alterations in the molecular architecture of their mitochondrial genome. A screening strategy for strains harbouring mtDNA with rearranged architecture showed that nearly all strains from groups I and III possess linear mtDNA molecules terminating with arrays of tandem repeat units, while most of the group II strains have a circular mitochondrial genome. In addition, it was found that linear genophores in mitochondria of strains from different groups differ in the sequence of the mitochondrial telomeric repeat unit. The occurrence of altered forms of mtDNA among strains opens up the unique possibility to address questions concerning the evolutionary origin and replication strategy of linear and circular genomes in mitochondria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26988-0
2004-05-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501571.html?itemId=/content/journal/micro/10.1099/mic.0.26988-0&mimeType=html&fmt=ahah

References

  1. Arendrup M., Horn T., Frimodt-Moller N.. 2002; In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection30:286–291[CrossRef]
    [Google Scholar]
  2. Branchini M. L., Pfaller M. A., Rhine-Chalberg J., Frempong T., Isenberg H. D.. 1994; Genotypic variation and slime production among blood and cathether isolates of Candida parapsilosis. J Clin Microbiol32:452–456
    [Google Scholar]
  3. Bridge D., Cunningham C. W., Schierwater B., DeSalle R., Buss L. W.. 1992; Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci U S A89:8750–8753[CrossRef]
    [Google Scholar]
  4. Camougrand N., Mila B., Velours G., Lazowska J., Guerin M.. 1988; Discrimination between different groups of Candida parapsilosis by mitochondrial DNA restriction analysis. Curr Genet13:445–449[CrossRef]
    [Google Scholar]
  5. Carruba G., Pontieri E., De Bernardis F., Martino P., Cassone A.. 1991; DNA fingerprinting and electrophoretic karyotype of environmental and clinical isolates of Candida parapsilosis. J Clin Microbiol29:916–922
    [Google Scholar]
  6. Cassone A., De Bernardis F., Pontieri E., Carruba G., Girmenia C., Martino P., Fernandez-Rodriguez M., Quindos G., Ponton J.. 1995; Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis171:967–975[CrossRef]
    [Google Scholar]
  7. Cohen S., Mechali M.. 2002; Formation of extrachromosomal circles from telomeric DNA in Xenopus laevis. EMBO Rep3:1168–1174[CrossRef]
    [Google Scholar]
  8. De Bernardis F., Mondello F., San Millan R., Ponton J., Cassone A.. 1999; Biotyping and virulence properties of skin isolates of Candida parapsilosis. J Clin Microbiol37:3481–3486
    [Google Scholar]
  9. Defontaine A., Lecocq F. M., Hallet J. N.. 1991; A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res19:185[CrossRef]
    [Google Scholar]
  10. Drissi R., Sor F., Nosek J., Fukuhara H.. 1994; Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast10:391–398[CrossRef]
    [Google Scholar]
  11. Enger L., Joly S., Pujol C., Simonson P., Pfaller M., Soll D. R.. 2001; Cloning and characterization of a complex DNA fingerprinting probe for Candida parapsilosis. J Clin Microbiol39:658–669[CrossRef]
    [Google Scholar]
  12. Fenn J., Segal H., Barland B., Denton D., Whisenant J., Chun H., Christofferson K., Hamilton L., Carroll K.. 1994; Comparison of updated Vitek Yeast Biochemical Card and API 20C yeast identification systems. J Clin Microbiol32:1184–1187
    [Google Scholar]
  13. Fukuhara H., Sor F., Drissi R., Dinouel N., Miyakawa I., Rousset S., Viola A. M.. 1993; Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol13:2309–2314
    [Google Scholar]
  14. Garber G.. 2001; An overview of fungal infections. Drugs61:1–12
    [Google Scholar]
  15. Griffith J. D., Comeau L., Rosenfield S., Stansel R. M., Bianchi A., Moss H., de Lange T.. 1999; Mammalian telomeres end in a large duplex loop. Cell97:503–514[CrossRef]
    [Google Scholar]
  16. Hazen K. C.. 1995; New and emerging yeast pathogens. Clin Microbiol Rev8:462–478
    [Google Scholar]
  17. Kaufman B. A., Newman S. M., Hallberg R. L., Slaughter C. A., Perlman P. S., Butow R. A.. 2000; In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci U S A97:7772–7777[CrossRef]
    [Google Scholar]
  18. Kovac L., Lazowska J., Slonimski P. P.. 1984; A yeast with linear molecules of mitochondrial DNA. Mol Gen Genet197:420–424[CrossRef]
    [Google Scholar]
  19. Kurtzman C. P., Robnett C. J.. 1997; Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol35:1216–1223
    [Google Scholar]
  20. Kurtzman C. P., Robnett C. J.. 1998; Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek73:331–371[CrossRef]
    [Google Scholar]
  21. Laflamme M., Lee R. W.. 2003; Mitochondrial genome conformation among CW-group chlorophycean algae. J Phycol39:213–220[CrossRef]
    [Google Scholar]
  22. Lin D., Wu L. C., Rinaldi M. G., Lehmann P. F.. 1995; Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol33:1815–1821
    [Google Scholar]
  23. Lott T. J., Kuykendall R. J., Welbel S. F., Pramanik A., Lasker B. A.. 1993; Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet23:463–467[CrossRef]
    [Google Scholar]
  24. Martin F. N.. 1995; Linear mitochondrial genome organization in vivo in the genus Pythium. Curr Genet28:225–234[CrossRef]
    [Google Scholar]
  25. Miyakawa I., Fumoto S., Kuroiwa T., Sando N.. 1995; Characterization of DNA-binding proteins involved in the assembly of mitochondrial nucleoids in the yeast Saccharomyces cerevisiae. Plant Cell Physiol36:1179–1188
    [Google Scholar]
  26. Miyakawa I., Okazaki-Higashi C., Higashi T., Furutani Y., Sando N.. 1996; Isolation and characterization of mitochondrial nucleoids from the yeast Pichia jadinii. Plant Cell Physiol37:816–824[CrossRef]
    [Google Scholar]
  27. Nakamura T. M., Cooper J. P., Cech T. R.. 1998; Two modes of survival of fission yeast without telomerase. Science282:493–496[CrossRef]
    [Google Scholar]
  28. Natarajan S., McEachern M. J.. 2002; Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol22:4512–4521[CrossRef]
    [Google Scholar]
  29. Naumov G. I.. 1987; Genetic basis for classification and identification of the ascomycetous yeasts. Stud Mycol30:469–475
    [Google Scholar]
  30. Nosek J., Fukuhara H.. 1994a; NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol176:5622–5630
    [Google Scholar]
  31. Nosek J., Fukuhara H.. 1994b; Mitochondrial transfer RNA genes of the yeast Candida parapsilosis. Gene142:307–308[CrossRef]
    [Google Scholar]
  32. Nosek J., Tomaska L.. 2002; Mitochondrial telomeres: alternative solutions to the end-replication problem. In Telomeres, Telomerases and Cancer pp.396–417 Edited by Krupp G., Parwaresch R.. New York: Kluwer Academic/Plenum;
  33. Nosek J., Tomaska L.. 2003; Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet44:73–84[CrossRef]
    [Google Scholar]
  34. Nosek J., Dinouel N., Kovac L., Fukuhara H.. 1995; Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet247:61–72[CrossRef]
    [Google Scholar]
  35. Nosek J., Tomaska L., Fukuhara H., Suyama Y., Kovac L.. 1998; Linear mitochondrial genomes: 30 years down the line. Trends Genet14:184–188[CrossRef]
    [Google Scholar]
  36. Nosek J., Tomaska L., Pagacova B., Fukuhara H.. 1999; Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem274:8850–8857[CrossRef]
    [Google Scholar]
  37. Nosek J., Tomaska L., Rycovska A., Fukuhara H.. 2002; Mitochondrial telomeres as molecular markers for identification of the opportunistic yeast pathogen Candida parapsilosis. J Clin Microbiol40:1283–1289[CrossRef]
    [Google Scholar]
  38. Olovnikov A. M.. 1971; Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR201:1496–1499
    [Google Scholar]
  39. Olovnikov A. M.. 1973; A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol41:181–190[CrossRef]
    [Google Scholar]
  40. Pfaller M. A., Messer S. A., Hollis R. J.. 1995; Variations in DNA subtype, antifungal susceptibility, and slime production among clinical isolates of Candida parapsilosis. Diagn Microbiol Infect Dis21:9–14[CrossRef]
    [Google Scholar]
  41. Phillippsen P., Stotz A., Scherf C.. 1991; DNA isolation of Saccharomyces cerevisiae. Methods Enzymol350:169–182
    [Google Scholar]
  42. Pontieri E., Gregori L., Gennarelli M., Ceddia T., Novelli G., Dallapiccola B., De Bernardis F., Carruba G.. 1996; Correlation of SfiI macrorestriction endonuclease fingerprint analysis of Candida parapsilosis isolates with source of isolation. J Med Microbiol45:173–178[CrossRef]
    [Google Scholar]
  43. Pontieri E., Caracciolo C., Bianchini S., Dantonio D., Novelli G., Dallapiccola B., Carruba G.. 2001; Single primer pair for PCR identification of Candida parapsilosis group I isolates. J Med Microbiol50:441–448
    [Google Scholar]
  44. Ramani R., Gromadzki S., Pincus D., Salkin I., Chaturvedi V.. 1998; Efficacy of API 20C and ID 32C systems for identification of common and rare clinical yeast isolates. J Clin Microbiol36:3396–3398
    [Google Scholar]
  45. Regev A., Cohen S., Cohen E., Bar-Am I., Lavi S.. 1998; Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene17:3455–3461
    [Google Scholar]
  46. Roy B., Meyer S. A.. 1998; Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J Clin Microbiol36:216–218
    [Google Scholar]
  47. Sambrook J., Russell D.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
  48. Su C. S., Meyer S. A.. 1989; Restriction endonuclease analysis of mitochondrial DNA from Candida parapsilosis and other Candida species.. Yeast5:S355–S360
    [Google Scholar]
  49. Su C. S., Meyer S. A.. 1991; Characterization of mitochondrial DNA in various Candida species: isolation, restriction endonuclease analysis, size, and base composition. Int J Syst Bacteriol41:6–14[CrossRef]
    [Google Scholar]
  50. Taylor K., Wegrzyn G.. 1995; Replication of coliphage lambda DNA. FEMS Microbiol Rev17:109–119[CrossRef]
    [Google Scholar]
  51. Tomaska L., Nosek J., Fukuhara H.. 1997; Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem272:3049–3056[CrossRef]
    [Google Scholar]
  52. Tomaska L., Nosek J., Makhov A. M., Pastorakova A., Griffith J. D.. 2000; Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res28:4479–4487[CrossRef]
    [Google Scholar]
  53. Tomaska L., Makhov A. M., Nosek J., Kucejova B., Griffith J. D.. 2001; Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. J Mol Biol305:61–69[CrossRef]
    [Google Scholar]
  54. Tomaska L., Makhov A. M., Griffith J. D., Nosek J.. 2002; t-loops in yeast mitochondria. Mitochondrion1:455–459[CrossRef]
    [Google Scholar]
  55. Watson J. D.. 1972; Origin of concatemeric T7 DNA. Nat New Biol239:197–201
    [Google Scholar]
  56. Weems J. J., Jr. 1992; Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis14:756–766[CrossRef]
    [Google Scholar]
  57. Williamson D.. 2002; The curious history of yeast mitochondrial DNA. Nat Rev Genet3:475–481[CrossRef]
    [Google Scholar]
  58. Yokoyama K., Biswas S. K., Miyaji M., Nishimura K.. 2000; Identification and phylogenetic relationship of the most common pathogenic Candida species inferred from mitochondrial cytochrome b gene sequences. J Clin Microbiol38:4503–4510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26988-0
Loading
/content/journal/micro/10.1099/mic.0.26988-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error