1887

Abstract

The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26974-0
2004-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501609.html?itemId=/content/journal/micro/10.1099/mic.0.26974-0&mimeType=html&fmt=ahah

References

  1. Achaz, G., Coissac, E., Netter, P. & Rocha, E. P. C. ( 2003; ). Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics 164, 1279–1289.
    [Google Scholar]
  2. Akman, L., Yamashita, A., Watanabe, H., Oshima, K., Shiba, T., Hattori, M. & Aksoy, S. ( 2002; ). Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32, 402–407.[CrossRef]
    [Google Scholar]
  3. Alberts, B. M., Barry, J., Bedinger, P., Formosa, T., Jongeneel, C. V. & Kreuzer, K. N. ( 1983; ). Studies on DNA replication in the bacteriophage T4 in vitro system. Cold Spring Harbor Symp Quant Biol 47, 655–668.[CrossRef]
    [Google Scholar]
  4. Andersson, S. G. E. & Kurland, C. G. ( 1990; ). Codon preferences in free-living microorganisms. Microbiol Rev 54, 198–210.
    [Google Scholar]
  5. Artsimovitch, I., Svetlov, V., Anthony, L., Burgess, R. R. & Landick, R. ( 2000; ). RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol 182, 6027–6035.[CrossRef]
    [Google Scholar]
  6. Bell, S. J., Chow, Y. C., Ho, J. Y. & Forsdyke, D. R. ( 1998; ). Correlation of chi orientation with transcription indicates a fundamental relationship between recombination and transcription. Gene 216, 285–292.[CrossRef]
    [Google Scholar]
  7. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  8. Bergthorsson, U. & Ochman, H. ( 1998; ). Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol 15, 6–16.[CrossRef]
    [Google Scholar]
  9. Biaudet, V., El Karoui, M. & Gruss, A. ( 1998; ). Codon usage can explain GT-rich islands surrounding Chi sites on the Escherichia coli genome. Mol Microbiol 29, 666–669.[CrossRef]
    [Google Scholar]
  10. Blakely, G., May, G., McCulloch, R., Arciszewska, L. K., Burke, M., Lovett, S. T. & Sherratt, D. J. ( 1993; ). Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75, 351–361.[CrossRef]
    [Google Scholar]
  11. Blattner, F. R., Plunkett, G., III, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1461.[CrossRef]
    [Google Scholar]
  12. Boye, E., Stokke, T., Kleckner, N. & Skarstad, K. ( 1996; ). Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci U S A 93, 12206–12211.[CrossRef]
    [Google Scholar]
  13. Bremer, H. & Dennis, P. P. ( 1996; ). Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1553–1569. Edited by F. Neidhardt and others. Washington DC: American Society for Microbiology.
  14. Brewer, B. ( 1988; ). When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686.[CrossRef]
    [Google Scholar]
  15. Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. ( 2002; ). Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18, 1–5.[CrossRef]
    [Google Scholar]
  16. Bruck, I. & O'Donnell, M. ( 2000; ). The DNA replication machine of a gram-positive organism. J Biol Chem 275, 28971–28983.[CrossRef]
    [Google Scholar]
  17. Burge, C., Campbell, A. M. & Karlin, S. ( 1992; ). Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci U S A 89, 1358–1362.[CrossRef]
    [Google Scholar]
  18. Burland, V., Plunkett, G., Daniels, D. L. & Blattner, F. R. ( 1993; ). DNA sequence and analysis of 136 kb of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics 16, 551–561.[CrossRef]
    [Google Scholar]
  19. Bussiere, D. E. & Bastia, D. ( 1999; ). Termination of DNA replication of bacterial and plasmid chromosomes. Mol Microbiol 31, 1611–1618.[CrossRef]
    [Google Scholar]
  20. Campbell, A. M. ( 1992; ). Chromosomal insertion sites for phages and plasmids. J Bacteriol 174, 7495–7499.
    [Google Scholar]
  21. Campbell, J. L. & Kleckner, N. ( 1990; ). E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967–979.[CrossRef]
    [Google Scholar]
  22. Campo, N., Dias, M. J., Daveran-Mingot, M. L., Ritzenthaler, P. & Le Bourgeois, P. ( 2004; ). Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 52, 511–522.
    [Google Scholar]
  23. Capiaux, H., Cornet, F., Corre, J., Guijo, M. I., Perals, K., Rebollo, J. E. & Louarn, J. M. ( 2001; ). Polarization of the Escherichia coli chromosome. A view from the terminus. Biochimie 83, 161–170.[CrossRef]
    [Google Scholar]
  24. Carlson, C. R. & Kolsto, A. B. ( 1994; ). A small Bacillus cereus chromosome corresponds to one conserved region of a larger Bacillus cereus chromosome. Mol Microbiol 13, 161–169.[CrossRef]
    [Google Scholar]
  25. Casjens, S. ( 1998; ). The diverse and dynamic structure of bacterial genomes. Annu Rev Genet 32, 339–377.[CrossRef]
    [Google Scholar]
  26. Cerdeno-Tarraga, A. M., Efstratiou, A., Dover, L. G. & 23 other authors ( 2003; ). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31, 6516–6523.[CrossRef]
    [Google Scholar]
  27. Chandler, M. G. & Pritchard, R. H. ( 1975; ). The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol Gen Genet 138, 127–141.[CrossRef]
    [Google Scholar]
  28. Chen, C. W., Huang, C. H., Lee, H. H., Tsai, H. H. & Kirby, R. ( 2002; ). Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 18, 522–529.[CrossRef]
    [Google Scholar]
  29. Condon, C., French, S., Squires, C. & Squires, C. L. ( 1993; ). Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J 12, 4305–4315.
    [Google Scholar]
  30. Corre, J. & Louarn, J. M. ( 2002; ). Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli. J Bacteriol 184, 3801–3807.[CrossRef]
    [Google Scholar]
  31. Corre, J., Patte, J. & Louarn, J. M. ( 2000; ). Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis-effect lending support to bipolarization of the terminus. Genetics 154, 39–48.
    [Google Scholar]
  32. Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. ( 1978; ). Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780.[CrossRef]
    [Google Scholar]
  33. Danchin, A., Dondon, L. & Daniel, J. ( 1984; ). Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12. Mol Gen Genet 193, 473–478.[CrossRef]
    [Google Scholar]
  34. d'Aubenton Carafa, Y., Brody, E. & Thermes, C. ( 1990; ). Prediction of Rho-independent E. coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol 216, 835–858.[CrossRef]
    [Google Scholar]
  35. Daubin, V. & Perriere, G. ( 2003; ). G+C structuring along the genome: a common feature in prokaryotes. Mol Biol Evol 20, 471–483.[CrossRef]
    [Google Scholar]
  36. Daubin, V., Lerat, E. & Perriere, G. ( 2003; ). The source of laterally transferred genes in bacterial genomes. Genome Biol 4, R57.[CrossRef]
    [Google Scholar]
  37. Davies, K. M. & Lewis, P. J. ( 2003; ). Localization of rRNA synthesis in Bacillus subtilis: characterization of loci involved in transcription focus formation. J Bacteriol 185, 2346–2353.[CrossRef]
    [Google Scholar]
  38. Dervyn, E., Suski, C., Daniel, R., Bruand, C., Chapuis, J., Errington, J., Jannière, L. & Ehrlich, S. D. ( 2001; ). Two essential DNA polymerases at the bacterial replication fork. Science 294, 1716–1719.[CrossRef]
    [Google Scholar]
  39. Deschavanne, P. & Filipski, J. ( 1995; ). Correlation of GC content with replication timing and repair mechanisms in weakly expressed E. coli genes. Nucleic Acids Res 23, 1350–1353.[CrossRef]
    [Google Scholar]
  40. Deshpande, A. M. & Newlon, C. S. ( 1996; ). DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033.[CrossRef]
    [Google Scholar]
  41. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. ( 1998; ). Rates of spontaneous mutation. Genetics 148, 1667–1686.
    [Google Scholar]
  42. Dubnau, D. & Lovett, C. M. ( 2002; ). Transformation and recombination. In Bacillus subtilis and its Closest Relatives, pp. 453–471. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  43. Dworkin, J. & Losick, R. ( 2002; ). Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci U S A 99, 14089–14094.[CrossRef]
    [Google Scholar]
  44. Eisen, J. A., Heidelberg, J. F., White, O. & Salzberg, S. L. ( 2000; ). Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1, 11.11–11.19.
    [Google Scholar]
  45. Elias-Arnanz, M. & Salas, M. ( 1997; ). Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J 16, 5775–5783.[CrossRef]
    [Google Scholar]
  46. Elias-Arnanz, M. & Salas, M. ( 1999; ). Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. EMBO J 18, 5675–5682.[CrossRef]
    [Google Scholar]
  47. El Karoui, M., Biaudet, V., Schbath, S. & Gruss, A. ( 1999; ). Characteristics of Chi distribution on different bacterial genomes. Res Microbiol 150, 579–587.[CrossRef]
    [Google Scholar]
  48. Ellwood, M. & Nomura, M. ( 1982; ). Chromosomal locations of the genes for rRNA in Escherichia coli K-12. J Bacteriol 149, 458–468.
    [Google Scholar]
  49. Errington, J., Daniel, R. A. & Scheffers, D. J. ( 2003; ). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67, 52–65.[CrossRef]
    [Google Scholar]
  50. Fijalkowska, I. J., Jonczyk, P., Tkaczyk, M. M., Bialokorska, M. & Schaaper, R. M. ( 1998; ). Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli genome. Proc Natl Acad Sci U S A 95, 10020–10025.[CrossRef]
    [Google Scholar]
  51. Francino, M. P. & Ochman, H. ( 1997; ). Strand asymmetries in DNA evolution. Trends Genet 13, 240–245.[CrossRef]
    [Google Scholar]
  52. Frank, A. C. & Lobry, J. R. ( 1999; ). Asymmetric patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77.[CrossRef]
    [Google Scholar]
  53. Frank, A. C., Amiri, H. & Andersson, S. G. ( 2002; ). Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115, 1–12.[CrossRef]
    [Google Scholar]
  54. French, S. ( 1992; ). Consequences of replication fork movement through transcription units in vivo. Science 258, 1362–1365.[CrossRef]
    [Google Scholar]
  55. Gierlik, A., Kowalczuk, M., Mackiewicz, P., Dudek, M. R. & Cebrat, S. ( 2000; ). Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202, 305–314.[CrossRef]
    [Google Scholar]
  56. Gil, R., Silva, F. J., Zientz, E. & 10 other authors ( 2003; ). The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci U S A 100, 9388–9393.[CrossRef]
    [Google Scholar]
  57. Giraldo, R. ( 2003; ). Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 26, 533–554.[CrossRef]
    [Google Scholar]
  58. Glover, B. P. & McHenry, C. S. ( 2001; ). The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 105, 925–934.[CrossRef]
    [Google Scholar]
  59. Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pavé, A. ( 1980; ). Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8, r49–r62.
    [Google Scholar]
  60. Grigoriev, A. ( 1998; ). Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26, 2286–2290.[CrossRef]
    [Google Scholar]
  61. Grigoriev, A. ( 1999; ). Strand-specific compositional asymmetries in double-stranded DNA viruses. Virus Res 60, 1–19.[CrossRef]
    [Google Scholar]
  62. Grigoriev, A. ( 2000; ). Graphical genome comparison: rearrangements and replication origin of Helicobacter pylori. Trends Genet 16, 376–378.[CrossRef]
    [Google Scholar]
  63. Gruss, A. & Michel, B. ( 2001; ). The replication-recombination connection: insights from genomics. Curr Opin Microbiol 4, 595–601.[CrossRef]
    [Google Scholar]
  64. Guijo, M. I., Patte, J., del Mar Campos, M., Louarn, J. M. & Rebollo, J. E. ( 2001; ). Localized remodeling of the Escherichia coli chromosome: the patchwork of segments refractory and tolerant to inversion near the replication terminus. Genetics 157, 1413–1423.
    [Google Scholar]
  65. Henson, J. M. & Kuempel, P. L. ( 1985; ). Deletion of the terminus region (340 kbp of DNA) from the chromosome of Escherichia coli. Proc Natl Acad Sci U S A 82, 3766–3770.[CrossRef]
    [Google Scholar]
  66. Huang, Y. P. & Ito, J. ( 1999; ). DNA polymerase C of the thermophilic bacterium Thermus aquaticus: classification and phylogenetic analysis of the family C DNA polymerases. J Mol Evol 48, 756–769.[CrossRef]
    [Google Scholar]
  67. Hudson, R. E., Bergthorsson, U., Roth, J. R. & Ochman, H. ( 2002; ). Effect of chromosome location on bacterial mutation rates. Mol Biol Evol 19, 85–92.[CrossRef]
    [Google Scholar]
  68. Iismaa, T. P. & Wake, R. G. ( 1987; ). The normal replication terminus of the Bacillus subtilis chromosome, terC, is dispensable for vegetative growth and sporulation. J Mol Biol 195, 299–310.[CrossRef]
    [Google Scholar]
  69. Ikemura, T. ( 1981; ). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146, 1–21.[CrossRef]
    [Google Scholar]
  70. Ito, J., Huang, Y. & Parekh, T. ( 1998; ). Studies on the cyanobacterial family C DNA polymerase. FEMS Microbiol Lett 158, 39–43.[CrossRef]
    [Google Scholar]
  71. Kaneko, T., Sato, S., Kotani, H. & 21 other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  72. Karlin, S. ( 1999; ). Bacterial DNA strand compositional asymmetry. Trends Microbiol 7, 305–308.[CrossRef]
    [Google Scholar]
  73. Karlin, S. & Brendel, V. ( 1992; ). Chance and statistical significance in protein and DNA analysis. Science 257, 39–49.[CrossRef]
    [Google Scholar]
  74. Kerr, A. R. W., Peden, J. F. & Sharp, P. M. ( 1997; ). Systematic base composition variation around the genome of Mycoplasma genitalium, but not Mycoplasma pneumoniae. Mol Microbiol 25, 1177–1184.
    [Google Scholar]
  75. Kitani, T., Yoda, K., Ogawa, T. & Okazaki, T. ( 1985; ). Evidence that discontinuous DNA replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J Mol Biol 184, 45–52.[CrossRef]
    [Google Scholar]
  76. Kobayashi, K., Ehrlich, S. D., Albertini, A. & 96 other authors ( 2003; ). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100, 4678–4683.[CrossRef]
    [Google Scholar]
  77. Kolsto, A.-B. ( 1997; ). Dynamic bacterial genome organization. Mol Microbiol 24, 241–248.[CrossRef]
    [Google Scholar]
  78. Koonin, E. V. & Bork, P. ( 1996; ). Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. Trends Genet 21, 128–129.
    [Google Scholar]
  79. Kuempel, P. L., Henson, J. M., Dircks, L., Tecklenburg, M. & Lim, D. F. ( 1991; ). dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3, 799–811.
    [Google Scholar]
  80. Kunkel, T. A. & Bebenek, K. ( 2000; ). DNA replication fidelity. Annu Rev Biochem 69, 497–529.[CrossRef]
    [Google Scholar]
  81. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  82. Kuzminov, A. ( 2001; ). DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci U S A 98, 8461–8468.[CrossRef]
    [Google Scholar]
  83. Lafay, B., Lloyd, A. T., McLean, M. J., Devine, K. M., Sharp, P. M. & Wolfe, K. H. ( 1999; ). Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res 27, 1642–1649.[CrossRef]
    [Google Scholar]
  84. Lawrence, J. G. & Hendrickson, H. ( 2003; ). Lateral gene transfer: when will adolescence end? Mol Microbiol 50, 739–749.[CrossRef]
    [Google Scholar]
  85. Lawrence, J. G. & Ochman, H. ( 1997; ). Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44, 383–397.[CrossRef]
    [Google Scholar]
  86. Leach, D. R. F. ( 1994; ). Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. BioEssays 16, 893–900.[CrossRef]
    [Google Scholar]
  87. Le Chatelier, E., Becherel, O. J., d'Alencon, E., Canceill, D., Ehrlich, S. D., Fuchs, R. P. & Jannière, L. ( 2004; ). Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem 279, 1757–1767.[CrossRef]
    [Google Scholar]
  88. Lewis, P. J., Thaker, S. D. & Errington, J. ( 2000; ). Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19, 710–718.[CrossRef]
    [Google Scholar]
  89. Li, Y., Youngren, B., Sergueev, K. & Austin, S. ( 2003; ). Segregation of the Escherichia coli chromosome terminus. Mol Microbiol 50, 825–834.[CrossRef]
    [Google Scholar]
  90. Lin, D. C.-H. & Grossman, A. ( 1998; ). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675–685.[CrossRef]
    [Google Scholar]
  91. Liu, B. & Alberts, B. M. ( 1995; ). Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1137.[CrossRef]
    [Google Scholar]
  92. Liu, S. L. & Sanderson, K. E. ( 1996; ). Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci U S A 93, 10303–10308.[CrossRef]
    [Google Scholar]
  93. Lobry, J. R. ( 1995; ). Properties of a general model of DNA evolution under no-strand bias conditions. J Mol Evol 40, 326–330.[CrossRef]
    [Google Scholar]
  94. Lobry, J. R. ( 1996a; ). Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13, 660–665.[CrossRef]
    [Google Scholar]
  95. Lobry, J. R. ( 1996b; ). Origin of replication of Mycoplasma genitalium. Science 272, 745–746.[CrossRef]
    [Google Scholar]
  96. Lobry, J. R. & Lobry, C. ( 1999; ). Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. Mol Biol Evol 16, 719–723.[CrossRef]
    [Google Scholar]
  97. Lobry, J. R. & Louarn, J. M. ( 2003; ). Polarisation of prokaryotic chromosomes. Curr Opin Microbiol 6, 101–108.[CrossRef]
    [Google Scholar]
  98. Lobry, J. & Sueoka, N. ( 2002; ). Asymmetric directional mutation pressures in bacteria. Genome Biol 3, 0058.0051–0058.0058.0014.
    [Google Scholar]
  99. Lopez, P. & Philippe, H. ( 2001; ). Composition strand asymmetries in prokaryotic genomes: mutational bias and biased gene orientation. C R Acad Sci III 324, 201–208.[CrossRef]
    [Google Scholar]
  100. Lopez, P., Philippe, H., Myllykallio, H. & Forterre, P. ( 1999; ). Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 32, 883–886.[CrossRef]
    [Google Scholar]
  101. Louarn, J. M., Bouche, J. P., Legendre, F., Louarn, J. & Patte, J. ( 1985; ). Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis. Mol Gen Genet 201, 467–476.[CrossRef]
    [Google Scholar]
  102. Lundgren, M., Andersson, A., Chen, L., Nilsson, P. & Bernander, R. ( 2004; ). Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101, 7046–7051.[CrossRef]
    [Google Scholar]
  103. Lusetti, S. L. & Cox, M. M. ( 2002; ). The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 2002, 71–100.
    [Google Scholar]
  104. Lutsenko, E. & Bhagwat, A. S. ( 1999; ). Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat Res 437, 11–20.[CrossRef]
    [Google Scholar]
  105. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M. R. & Cebrat, S. ( 1999; ). How does replication-associated mutational pressure influence amino acid composition of proteins? Genome Res 9, 409–416.
    [Google Scholar]
  106. Mackiewicz, P., Mackiewicz, D., Kowalczuk, M. & Cebrat, S. ( 2001a; ). Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol 2, INTERACTIONS1004.
    [Google Scholar]
  107. Mackiewicz, P., Mackiewicz, D., Gierlik, A., Kowalczuk, M., Nowicka, A., Dudkiewicz, M., Dudek, M. R. & Cebrat, S. ( 2001b; ). The differential killing of genes by inversions in prokaryotic genomes. J Mol Evol 53, 615–621.[CrossRef]
    [Google Scholar]
  108. Maisnier-Patin, S., Malandrin, L., Birkeland, N. K. & Bernander, R. ( 2002; ). Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii. Mol Microbiol 45, 1443–1450.[CrossRef]
    [Google Scholar]
  109. Maki, H. & Kornberg, A. ( 1987; ). Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits. Proc Natl Acad Sci U S A 84, 4389–4392.[CrossRef]
    [Google Scholar]
  110. Marians, K. J. ( 1992; ). Prokaryotic DNA replication. Annu Rev Biochem 61, 673–719.[CrossRef]
    [Google Scholar]
  111. Massey, T. H., Aussel, L., Barre, F. X. & Sherratt, D. J. ( 2004; ). Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5, 399–404.[CrossRef]
    [Google Scholar]
  112. Matsunaga, F., Norais, C., Forterre, P. & Myllykallio, H. ( 2002; ). Identification of short “eukaryotic” Okasaki fragments synthesized from a prokaryotic replication origin. Embo Rep 4, 154–158.
    [Google Scholar]
  113. May, B. J., Zhang, Q., Li, L. L., Paustian, M. L., Whittam, T. S. & Kapur, V. ( 2001; ). Complete genomic sequence of Pasteurella multocida, Pm70. Proc Natl Acad Sci U S A 98, 3460–3465.[CrossRef]
    [Google Scholar]
  114. McInerney, J. O. ( 1998; ). Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci U S A 95, 10698–10703.[CrossRef]
    [Google Scholar]
  115. McLean, M. J., Wolfe, K. H. & Devine, K. M. ( 1998; ). Base composition skews, replication orientation and gene orientation in 12 prokaryote genomes. J Mol Evol 47, 691–696.[CrossRef]
    [Google Scholar]
  116. Médigue, C., Rouxel, T., Vigier, P., Henaut, A. & Danchin, A. ( 1991; ). Evidence for horizontal gene transfer in E. coli speciation. J Mol Biol 222, 851–856.[CrossRef]
    [Google Scholar]
  117. Mikkola, R. & Kurland, C. G. ( 1991; ). Is there a unique ribosome phenotype for naturally occurring Escherichia coli? Biochimie 73, 1061–1066.[CrossRef]
    [Google Scholar]
  118. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. & Rüger, W. ( 2003; ). Bacteriophage T4 genome. Microbiol Mol Biol Rev 67, 86–156.[CrossRef]
    [Google Scholar]
  119. Mira, A. & Ochman, H. ( 2002; ). Gene location and bacterial sequence divergence. Mol Biol Evol 19, 1350–1358.[CrossRef]
    [Google Scholar]
  120. Mohr, S., Freeman, J., Plasterer, T. & Smith, T. ( 1999; ). Patterns of mitochondrial DNA strand asymmetry correlate with phylogeny. Biol Bull 196, 411–412.[CrossRef]
    [Google Scholar]
  121. Mrázek, J. & Karlin, S. ( 1998; ). Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci U S A 95, 3720–3725.[CrossRef]
    [Google Scholar]
  122. Musto, H., Romero, H. & Zavala, A. ( 2003; ). Translational selection is operative for synonymous codon usage in Clostridium perfringens and Clostridium acetobutylicum. Microbiology 149, 855–863.[CrossRef]
    [Google Scholar]
  123. Myllykallio, H., Lopez, P., Lopez-Garcia, P., Heilig, R., Saurin, W., Zivanovic, Y., Philippe, H. & Forterre, P. ( 2000; ). Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215.[CrossRef]
    [Google Scholar]
  124. Nelson, K. E., Clayton, R. A., Gill, S. R. & 26 other authors ( 1999; ). Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329.[CrossRef]
    [Google Scholar]
  125. Nomura, M. & Morgan, E. A. ( 1977; ). Genetics of bacterial ribosomes. Annu Rev Genet 11, 297–347.[CrossRef]
    [Google Scholar]
  126. Norris, V. & Madsen, M. S. ( 1995; ). Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253, 739–748.[CrossRef]
    [Google Scholar]
  127. Ogasawara, N. & Yoshikawa, H. ( 1992; ). Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol 6, 629–634.[CrossRef]
    [Google Scholar]
  128. Olavarrieta, L., Hernandez, P., Krimer, D. B. & Schvartzman, J. B. ( 2002; ). DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 322, 1–6.[CrossRef]
    [Google Scholar]
  129. Omura, S., Ikeda, H., Ishikawa, J. & 11 other authors ( 2001; ). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 12215–12220.[CrossRef]
    [Google Scholar]
  130. Pakula, A. A. & Sauer, R. T. ( 1989; ). Genetic analysis of protein stability and function. Annu Rev Genet 23, 289–310.[CrossRef]
    [Google Scholar]
  131. Pato, M. L. ( 1975; ). Alterations of the rate of movements of deoxyribonucleic acid replication forks. J Bacteriol 23, 272–277.
    [Google Scholar]
  132. Perals, K., Capiaux, H., Vincourt, J. B., Louarn, J. M., Sherratt, D. J. & Cornet, F. ( 2001; ). Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol Microbiol 39, 904–913.[CrossRef]
    [Google Scholar]
  133. Perrière, G., Lobry, J. R. & Thioulouse, J. ( 1996; ). Correspondance discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences. CABIOS 12, 519–524.
    [Google Scholar]
  134. Picardeau, M., Lobry, J. R. & Hinnenbusch, B. J. ( 1999; ). Physical mapping of an origin of bidirectional replication at the centre of the Borrelia burgdorferi linear chromosome. Mol Microbiol 32, 437–445.[CrossRef]
    [Google Scholar]
  135. Picardeau, M., Lobry, J. R. & Hinnebusch, B. J. ( 2000; ). Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res 10, 1594–1604.[CrossRef]
    [Google Scholar]
  136. Radman, M. ( 1998; ). DNA replication: one strand may be more equal. Proc Natl Acad Sci U S A 95, 9718–9719.[CrossRef]
    [Google Scholar]
  137. Recchia, G. D. & Sherratt, D. J. ( 1999; ). Conservation of xer site-specific recombination genes in bacteria. Mol Microbiol 34, 1146–1148.[CrossRef]
    [Google Scholar]
  138. Reyes, A., Gissi, C., Pesole, G. & Saccone, C. ( 1998; ). Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15, 957–966.[CrossRef]
    [Google Scholar]
  139. Robinson, N. P., Dionne, I., Lundgren, M., Marsh, V. L., Bernander, R. & Bell, S. D. ( 2004; ). Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116, 25–38.[CrossRef]
    [Google Scholar]
  140. Rocha, E. P. C. ( 2002; ). Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes? Trends Microbiol 10, 393–396.[CrossRef]
    [Google Scholar]
  141. Rocha, E. P. C. ( 2003; ). DNA repeats lead to the accelerated loss of gene order in Bacteria. Trends Genet 19, 600–604.[CrossRef]
    [Google Scholar]
  142. Rocha, E. P. C. & Danchin, A. ( 2001; ). Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol 18, 1789–1799.[CrossRef]
    [Google Scholar]
  143. Rocha, E. P. C. & Danchin, A. ( 2002; ). Competition for scarce resources might bias bacterial genome composition. Trends Genet 18, 291–294.[CrossRef]
    [Google Scholar]
  144. Rocha, E. P. C. & Danchin, A. ( 2003a; ). Essentiality, not expressiveness, drives gene strand bias in bacteria. Nat Genet 34, 377–378.[CrossRef]
    [Google Scholar]
  145. Rocha, E. P. C. & Danchin, A. ( 2003b; ). Gene essentiality as a determinant of chromosomal organization in Bacteria. Nucleic Acids Res 31, 6570–6577.[CrossRef]
    [Google Scholar]
  146. Rocha, E. P. C., Viari, A. & Danchin, A. ( 1998; ). Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons. Nucleic Acids Res 26, 2971–2980.[CrossRef]
    [Google Scholar]
  147. Rocha, E. P. C., Danchin, A. & Viari, A. ( 1999a; ). Universal replication bias in bacteria. Mol Microbiol 32, 11–16.[CrossRef]
    [Google Scholar]
  148. Rocha, E. P. C., Danchin, A. & Viari, A. ( 1999b; ). Functional and evolutionary roles of long repeats in prokaryotes. Res Microbiol 150, 725–733.[CrossRef]
    [Google Scholar]
  149. Rocha, E. P. C., Fralick, J., Vediyappan, G., Danchin, A. & Norris, V. ( 2003; ). A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49, 895–903.[CrossRef]
    [Google Scholar]
  150. Rolfe, R. & Meselson, M. ( 1958; ). The relative homogeneity of microbial DNA. Proc Natl Acad Sci U S A 45, 1039–1043.
    [Google Scholar]
  151. Romero, H., Zavala, A. & Musto, H. ( 2000; ). Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28, 2084–2090.[CrossRef]
    [Google Scholar]
  152. Roth, J. R., Benson, N., Galitski, T., Haack, K., Lawrence, J. G. & Miesel, L. ( 1996; ). Rearrangements of the bacterial chromosome: formation and applications. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2256–2276. Edited by F. Neidhardt and others. Washington DC: American Society for Microbiology.
  153. Rudner, R., Karkas, J. D. & Chargaff, E. ( 1968; ). Separation of B. subtilis DNA into complementary strands. I. Biological properties. Proc Natl Acad Sci U S A 60, 630–635.[CrossRef]
    [Google Scholar]
  154. Salzberg, S. L., Salzberg, A. J., Kerlavage, A. R. & Tomb, J.-F. ( 1998; ). Skewed oligomers and origins of replication. Gene 217, 57–67.[CrossRef]
    [Google Scholar]
  155. Schmid, M. B. & Roth, J. R. ( 1987; ). Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169, 2872–2875.
    [Google Scholar]
  156. Segall, A., Mahan, M. J. & Roth, J. R. ( 1988; ). Rearrangement of the bacterial chromosome: forbidden inversions. Science 241, 1314–1318.[CrossRef]
    [Google Scholar]
  157. Seto, S. & Miyata, M. ( 1998; ). Cell reproduction and morphological changes in Mycoplasma capricolum. J Bacteriol 180, 256–264.
    [Google Scholar]
  158. Sharp, P. M. & Li, W. H. ( 1987; ). The codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15, 1281–1295.[CrossRef]
    [Google Scholar]
  159. Sharp, P. M., Shields, D. C., Wolfe, K. H. & Li, W.-H. ( 1989; ). Chromosomal location and evolutionary rate variation in enterobacterial genes. Science 246, 808–810.[CrossRef]
    [Google Scholar]
  160. Skarstad, K., Boye, E. & Steen, H. B. ( 1986; ). Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5, 1711–1717.
    [Google Scholar]
  161. Smith, G. R. ( 1988; ). Homologous recombination in procaryotes. Microbiol Rev 52, 1–28.
    [Google Scholar]
  162. Studwell, P. S. & O'Donnell, M. ( 1990; ). Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J Biol Chem 265, 1171–1178.
    [Google Scholar]
  163. Sueoka, N. ( 1962; ). On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A 48, 582–591.[CrossRef]
    [Google Scholar]
  164. Sueoka, N. ( 1995; ). Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40, 318–325.[CrossRef]
    [Google Scholar]
  165. Suyama, M. & Bork, P. ( 2001; ). Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17, 10–13.[CrossRef]
    [Google Scholar]
  166. Szczepanik, D., Mackiewicz, P., Kowalczuk, M., Gierlik, A., Nowicka, A., Dudek, M. R. & Cebrat, S. ( 2001; ). Evolution rates of genes on leading and lagging DNA strands. J Mol Evol 52, 426–433.
    [Google Scholar]
  167. Tamas, I., Klasson, L., Canback, B., Naslund, A. K., Eriksson, A. S., Wernegreen, J. J., Sandstrom, J. P., Moran, N. A. & Andersson, S. G. ( 2002; ). 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379.[CrossRef]
    [Google Scholar]
  168. Tao, H., Bausch, C., Richmond, C., Blattner, F. R. & Conway, T. ( 1999; ). Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181, 6425–6440.
    [Google Scholar]
  169. Tillier, E. R. & Collins, R. A. ( 2000a; ). The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J Mol Evol 50, 249–257.
    [Google Scholar]
  170. Tillier, E. R. & Collins, R. A. ( 2000b; ). Replication orientation affects the rate and direction of bacterial gene evolution. J Mol Evol 51, 459–463.
    [Google Scholar]
  171. Tillier, E. R. & Collins, R. A. ( 2000c; ). Genome rearrangement by replication-directed translocation. Nat Genet 26, 195–197.[CrossRef]
    [Google Scholar]
  172. Trifonov, E. N. ( 1989; ). The multiple codes of nucleotide sequences. Bull Math Biol 51, 417–432.[CrossRef]
    [Google Scholar]
  173. Trinh, T. Q. & Sinden, R. R. ( 1991; ). Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544–547.[CrossRef]
    [Google Scholar]
  174. Uno, R., Nakayama, Y., Arakawa, K. & Tomita, M. ( 2000; ). The orientation bias of Chi sequences is a general tendency of G-rich oligomers. Gene 259, 207–215.[CrossRef]
    [Google Scholar]
  175. Woldringh, C. L. ( 2002; ). The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45, 17–29.[CrossRef]
    [Google Scholar]
  176. Woldringh, C. L., Jensen, P. R. & Westerhoff, H. V. ( 1995; ). Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? FEMS Microbiol Lett 131, 235–242.[CrossRef]
    [Google Scholar]
  177. Wu, L. J. & Errington, J. ( 2002; ). A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO J 21, 4001–4011.[CrossRef]
    [Google Scholar]
  178. Yuzhakov, A., Turner, J. & O'Donnell, M. ( 1996; ). Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86, 877–886.[CrossRef]
    [Google Scholar]
  179. Zeigler, D. R. & Dean, D. H. ( 1990; ). Orientation of genes in the Bacillus subtilis chromosome. Genetics 125, 703–708.
    [Google Scholar]
  180. Zivanovic, Y., Lopez, P., Philippe, H. & Forterre, P. ( 2002; ). Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30, 1902–1910.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26974-0
Loading
/content/journal/micro/10.1099/mic.0.26974-0
Loading

Data & Media loading...

Supplements

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT

1. Data on the distance of rDNA genes to the origins of replication in bacterial genomes (Fig. 6 in paper) are available hereas a txt file. 2. Data on compositional strand bias (Fig. 5 in paper) are available hereas a txt file. 3. Data on gene strand bias (Fig. 3 in paper) are available hereas a txt file. 4. Classification of genes (Fig. 7 in paper) is presented herein text format. 5. Classification of genes (Fig. 7 in paper) is presented herein text format. 6. G and C variation between strands and the beginning and end of the chromosome (Fig. 9 in paper)is presented herein text format.

TEXT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error