1887

Abstract

produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called ‘A’ repeats. The genome sequence was searched for ORFs containing ‘A’ repeats, and one novel gene, , which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three ‘A’ repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a of 2–3 nM. Construction of truncated derivatives of GbpD confirmed that the ‘A’ repeat region was essential for binding. Furthermore, a knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the / hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site ‘lipase box’ and an ‘oxyanion hole’. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of and another plaque bacterium, . GbpD bound to and released FFA from lipoteichoic acid (LTA) of , but had no effect on LTA from . These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26955-0
2004-06-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501947.html?itemId=/content/journal/micro/10.1099/mic.0.26955-0&mimeType=html&fmt=ahah

References

  1. Abo, H., Matsumura, T., Kodoma, T., Ohta, H., Fukui, K., Kato, K. & Kagawa, H. ( 1991; ). Peptide sequences for sucrose splitting and glucan binding with Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase). J Bacteriol 173, 989–996.
    [Google Scholar]
  2. Ajdić, D., Mc Shan, W. M., McLaughlin, R. E. & 16 other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99, 14434–14439.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Apweiler, R., Attwood, T. K., Bairoch, A. & 25 other authors ( 2001; ). The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29, 37–40.[CrossRef]
    [Google Scholar]
  5. Arpigny, J. L. & Jaeger, K.-E. ( 1999; ). Bacterial lipolytic enzymes, classification and properties. J Biochem 343, 177–183.[CrossRef]
    [Google Scholar]
  6. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp 28–36. Menlo Park, CA: AAAI Press.
  7. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values, application to sequence homology searches. Bioinformatics 14, 48–54.[CrossRef]
    [Google Scholar]
  8. Banas, J. A. & Gilmore, K. S. ( 1991; ). Analysis of Streptococcus mutans and Streptococcus downei mutants insertionally inactivated in the gbp and gtfA genes. In Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci, pp. 281–283. Edited by G. M. Dunny, P. P. Cleary & L. L. McKay. Washington, DC: American Society for Microbiology.
  9. Banas, J. A. & Vickerman, M. M. ( 2003; ). Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14, 89–99.[CrossRef]
    [Google Scholar]
  10. Banas, J. A., Russell, R. R. B. & Ferretti, J. J. ( 1990; ). Sequence-analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt. Infect Immun 58, 667–673.
    [Google Scholar]
  11. Becker, M. R., Paster, B., Leys, E., Moeschberger, M. L., Kenyon, S., Galvin, J. L., Boches, S. K., Dewhirst, F. E. & Griffen, A. L. ( 2002; ). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40, 1001–1009.[CrossRef]
    [Google Scholar]
  12. Bell, P. J. L., Sunna, A., Gibbs, M. D., Curach, N. C., Nevalainen, H. & Bergquist, P. L. ( 2002; ). Prospecting for novel lipase genes using PCR. Microbiology 148, 2283–2291.
    [Google Scholar]
  13. Bowden, M. G., Visai, L., Longshaw, C. M., Holland, K. T., Speziale, P. & Höök, M. ( 2002; ). Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277, 43017–43023.[CrossRef]
    [Google Scholar]
  14. Chia, J.-S., Chang, L. Y., Shun, C.-T., Chang, Y.-Y. & Chen, J.-Y. ( 2001; ). A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans. Infect Immun 69, 6987–6998.[CrossRef]
    [Google Scholar]
  15. Chiu, T. H. & Baker, J. J. ( 1994; ). Lipoteichoic acid from Streptococcus sanguis is a natural glucosyl acceptor for glucosyltransferases. Biochem Biophys Res Commun 202, 1407–1412.[CrossRef]
    [Google Scholar]
  16. Colby, S. M. & Russell, R. R. B. ( 1997; ). Sugar metabolism by mutans streptococci. J Appl Microbiol 83, 80S–88S.[CrossRef]
    [Google Scholar]
  17. Colby, S. M., Harrington, D. J. & Russell, R. R. B. ( 1995a; ). Identification and genetic characterisation of melibiose-negative isolates of Streptococcus mutans. Caries Res 29, 407–412.[CrossRef]
    [Google Scholar]
  18. Colby, S. M., Whiting, G. C., Tao, L. & Russell, R. R. B. ( 1995b; ). Insertional inactivation of the Streptococcus mutans dexA (dextranase). gene results in altered adherence and dextran catabolism. Microbiology 141, 2929–2936.[CrossRef]
    [Google Scholar]
  19. Colby, S. M., McLaughlin, R. E., Ferretti, J. J. & Russell, R. R. B. ( 1999; ). Effect of inactivation of gtf genes on adherence of Streptococcus downei. Oral Microbiol Immunol 14, 27–32.[CrossRef]
    [Google Scholar]
  20. Cote, C. K., Cvitkovitch, D., Bleiweis, A. S. & Honeyman, A. L. ( 2000; ). A novel β-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology 146, 1555–1563.
    [Google Scholar]
  21. De las Rivas, B., Garcia, J. L., Lopez, R. & Garcia, P. ( 2001; ). Molecular characterisation of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 7, 213–222.[CrossRef]
    [Google Scholar]
  22. Dogouet, D., Bolla, J.-M., Munier-Lehmann, H. & Labesse, G. ( 2002; ). From sequence to structure to function, a case study. Enzyme Microb Technol 30, 289–294.[CrossRef]
    [Google Scholar]
  23. Douglas, C. W. & Russell, R. R. B. ( 1982; ). Effect of specific antisera on adherence properties of the oral bacterium Streptococcus mutans. Arch Oral Biol 27, 1039–1045.[CrossRef]
    [Google Scholar]
  24. Ferretti, J. J., Gilpin, M. L. & Russell, R. R. B. ( 1987; ). Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol 169, 4271–4278.
    [Google Scholar]
  25. Garcia, J. L., Sanchez-Beato, A. R., Medrano, F. J. & Lopez, R. ( 1998; ). Versatility of choline-binding domain. Microb Drug Resist 4, 25–36.[CrossRef]
    [Google Scholar]
  26. Giffard, P. M. & Jacques, N. A. ( 1994; ). Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res 73, 1133–1141.
    [Google Scholar]
  27. Gilmore, K. S., Russell, R. R. B. & Ferretti, J. J. ( 1990; ). Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun 58, 2452–2458.
    [Google Scholar]
  28. Hamada, S. & Slade, H. D. ( 1980; ). Biology, immunology and cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331–384.
    [Google Scholar]
  29. Harrington, D. J. & Russell, R. R. B. ( 1993; ). Multiple changes in cell wall antigens of isogenic mutants of Streptococcus mutans. J Bacteriol 175, 5925–5933.
    [Google Scholar]
  30. Hazlett, K. R. O., Michalek, S. M. & Banas, J. A. ( 1998; ). Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase B and C genes. Infect Immun 66, 2180–2185.
    [Google Scholar]
  31. Hazlett, K. R. O., Mazurkiewicz, J. E. & Banas, J. A. ( 1999; ). Inactivation of the gbpA gene of Streptococcus mutans alters structural and functional aspects of plaque biofilm which are compensated by recombination between the gtfB and gtfC genes. Infect Immun 67, 3909–3914.
    [Google Scholar]
  32. Hogg, S. D. & Manning, J. E. ( 1987; ). The hydrophobicity of ‘viridans' streptococci isolated from the human mouth. J Appl Bacteriol 63, 311–318.[CrossRef]
    [Google Scholar]
  33. Homer, K. A., Roberts, G., Byers, H. L., Tarelli, E., Whiley, R. A., Philpott-Howard, J. & Beighton, D. ( 2001; ). Mannosidase production by viridans group streptococci. J Clin Microbiol 39, 995–1001.[CrossRef]
    [Google Scholar]
  34. Jakubovics, N. S. & Jenkinson, H. F. ( 2001; ). Out of the iron age, new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 1709–1718.
    [Google Scholar]
  35. Janeček, S., Svensson, B. & Russell, R. R. B. ( 2000; ). Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiol Lett 192, 53–57.[CrossRef]
    [Google Scholar]
  36. Kochanowski, B., Fischer, W., Iida-Tanaka, N. & Ishiza, I. ( 1993; ). Isomalto-ologosaccharide-containing lipoteichoic acid of Streptococcus sanguis, basic structure. Eur J Biochem 214, 747–755.[CrossRef]
    [Google Scholar]
  37. Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. ( 2001; ). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183, 897–908.[CrossRef]
    [Google Scholar]
  38. Lis, M., Shiroza, T. & Kuramitsu, H. K. ( 1995; ). Role of the C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding. Appl Environ Microbiol 61, 2040–2042.
    [Google Scholar]
  39. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  40. Malke, H., Mechold, U., Gase, K. & Gerlach, D. ( 1994; ). Inactivation of the streptokinase gene prevents Streptococcus equisimilis H46A from acquiring cell-associated plasmin activity in the presence of plasminogen. FEMS Microbiol Lett 116, 107–112.[CrossRef]
    [Google Scholar]
  41. Matsumura, M., Izumi, T., Matsumoto, M., Tsuji, M., Fujiwara, T. & Ooshima, T. ( 2003; ). The role of glucan-binding proteins in the cariogenicity of Streptococus mutans. Microbiol Immunol 47, 213–215.[CrossRef]
    [Google Scholar]
  42. Mattos-Graner, R. O., Jin, S., King, W. F., Chen, T., Smith, D. J. & Duncan, M. J. ( 2001; ). Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun 69, 6931–6941.[CrossRef]
    [Google Scholar]
  43. Monchois, V., Willemot, R. M., Remaud-Simeon, M., Croux, C. & Monsan, P. ( 1996; ). Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only α(1-6) and α(1-3) linkages. Gene 182, 23–32.[CrossRef]
    [Google Scholar]
  44. Monchois, V., Willemot, R. M. & Monsan, P. ( 1999; ). Glucansucrases, mechanism of action and structure-function relationships. FEMS Microbiol Rev 23, 131–151.
    [Google Scholar]
  45. Mooser, G. & Wong, C. ( 1988; ). Isolation of a glucan-binding domain of glucosyltransferase (1,6-α-glucan synthase) from Streptococcus sobrinus. Infect Immun 56, 880–884.
    [Google Scholar]
  46. Muller-Hill, B. L., Crapo, L. & Gilbert, W. ( 1968; ). Mutants that make more lac repressor. Proc Natl Acad Sci U S A 59, 1259–1264.[CrossRef]
    [Google Scholar]
  47. Nardini, M. & Dijkstra, B. W. ( 1999; ). α/β Hydrolase fold enzymes, the family keeps growing. Curr Opin Struct Biol 9, 732–737.[CrossRef]
    [Google Scholar]
  48. Novák, M. ( 1965; ). Colorimetric ultramicro method for the determination of free fatty acids. J Lipid Res 6, 431–433.
    [Google Scholar]
  49. Rolla, G., Oppermann, R. V., Bowen, W. H., Ciardi, J. E. & Knox, K. W. ( 1980; ). High amounts of lipoteichoic acid in sucrose-induced plaque in vivo. Caries Res 14, 235–238.[CrossRef]
    [Google Scholar]
  50. Ronda, C., Garcia, J. L. & Lopez, R. ( 1991; ). Teichoic acid esterase, a novel hydrolytic activity in Streptococcus oralis. FEMS Microbiol Lett 80, 289–294.[CrossRef]
    [Google Scholar]
  51. Russell, R. R. B. ( 1979a; ). Glucan-binding proteins of Streptococcus mutans serotype c. J Gen Microbiol 112, 197–201.[CrossRef]
    [Google Scholar]
  52. Russell, R. R. B. ( 1979b; ). Purification of Streptococcus mutans glucosyltransferase by polyethylene glycol precipitation. FEMS Microbiol Lett 6, 197–199.[CrossRef]
    [Google Scholar]
  53. Russell, R. R. B. ( 1990; ). Molecular genetics of glucan metabolism in oral streptococci. Arch Oral Biol 35, 53S–58S.[CrossRef]
    [Google Scholar]
  54. Russell, R. R. B. & Beighton, D. ( 1982; ). Specificity of natural antibodies reactive with Streptococcus mutans in monkeys. Infect Immun 35, 741–744.
    [Google Scholar]
  55. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  56. Sato, Y., Yamamoto, Y. & Kizaki, H. ( 1997; ). Cloning and sequence analysis of the gbpC gene encoding a novel glucan-binding protein of Streptococcus mutans. Infect Immun 65, 668–675.
    [Google Scholar]
  57. Shah, D. S. H. & Russell, R. R. B. ( 2002; ). Glucan binding domain of streptococcal glucosyltransferases. Biologia 57, 129–136.
    [Google Scholar]
  58. Shakhnovitch, E. A., King, S. J. & Weiser, J. N. ( 2002; ). Neuraminidase expressed by Streptococus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae, a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70, 7161–7164.[CrossRef]
    [Google Scholar]
  59. Simpson, C. L. & Russell, R. R. B. ( 1998; ). Intracellular α-amylase of Streptococcus mutans. J Bacteriol 180, 4711–4717.
    [Google Scholar]
  60. Smith, D. J., Akita, H., King, W. F. & Taubman, M. A. ( 1994; ). Purification and antigenicity of a novel glucan-binding protein of Streptococcus mutans. Infect Immun 62, 2545–2552.
    [Google Scholar]
  61. Sutcliffe, I. C. & Hogg, S. D. ( 1993; ). Extraction of lipoteichoic acid from Streptococcus mutans with the nonionic detergent Triton-X-114. J Microbiol Methods 17, 215–225.[CrossRef]
    [Google Scholar]
  62. Van Houte, J., Russo, J. & Prostak, K. S. ( 1989; ). Increased pH-lowering ability of Streptococcus mutans cell masses associated with extracellular glucan-rich matrix material and the mechanisms involved. J Dent Res 68, 451–459.[CrossRef]
    [Google Scholar]
  63. Vickerman, M. M., Sulavik, M. C., Nowak, J. D., Gardner, N. M., Jones, G. W. & Clewell, D. B. ( 1996; ). Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. DNA Sequence 7, 83–95.
    [Google Scholar]
  64. Vollmer, W. & Tomasz, A. ( 2001; ). Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 39, 1610–1622.[CrossRef]
    [Google Scholar]
  65. Whiley, R. A., Russell, R. R. B., Hardie, J. M. & Beighton, D. ( 1988; ). Streptococcus downei sp-nov for strains previously described as Streptococcus mutans serotype-h. Int J Syst Bacteriol 38, 25–29.[CrossRef]
    [Google Scholar]
  66. Wren, B. W. ( 1991; ). A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5, 797–803.[CrossRef]
    [Google Scholar]
  67. Wren, B. W., Russell, R. R. B. & Tabaqchali, S. ( 1991; ). Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile Toxin A, Streptococcus mutans glucan-binding protein and a synthetic peptide. Infect Immun 59, 3151–3155.
    [Google Scholar]
  68. Yother, J. & Briles, D. E. ( 1992; ). Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J Bacteriol 174, 601–609.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26955-0
Loading
/content/journal/micro/10.1099/mic.0.26955-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error