1887

Abstract

sp. has been recognized in recent years as a producer of a high number of secondary metabolites. Among these, peptides that are produced by the non-ribosomal peptide synthetase pathway often show bioactivity or are toxic to humans. The production of particular peptides is specific for individual clones, allowing their characterization as chemotypes by analysing the peptidome. The authors studied the diversity of peptides and chemotypes in communities from lakes in and around Berlin, Germany, by direct analysis of individual colonies by MALDI-TOF mass spectrometry. From 165 colonies analysed a total of 46 individual peptides could be identified, 21 of which have not been described previously. For six of the new peptides the structures could be elucidated from fragment patterns, while for others only a preliminary classification could be achieved. In most colonies, two to ten individual peptides were detected. In 19 colonies, 16 of which were identified as , no peptide metabolites could be detected. The peptide data of 146 colonies were subjected to an ordination (principal components analysis). The principal components were clearly formed by the microcystin variants Mcyst-LR, -RR and -YR, anabaenopeptins B and E/F, a putative microviridin, and a new cyanopeptolin. In the resulting ordination plots most colonies were grouped into five distinct groups, while 40 colonies scattered widely outside these groups. In some cases colonies from different lakes clustered closely, indicating the presence of similar chemotypes in the respective samples. With respect to colony morphology no clear correlation between a chemotype and a morphospecies could be established, but , for example, was found to produce predominantly microcystins. In contrast, colonies were mostly negative for microcystins and instead produced anabaenopeptins. The number of peptides detected in a limited number of samples and the various combinations of peptides in individual colonies highlights the immense metabolic potential and diversity of this genus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26947-0
2004-06-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501785.html?itemId=/content/journal/micro/10.1099/mic.0.26947-0&mimeType=html&fmt=ahah

References

  1. Barker, G. L. A., Handley, B. A., Vacharapiyasophon, P., Stevens, J. R. & Hayes, P. K. ( 2000; ). Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (Cyanobacteria) filaments in the Baltic Sea. Microbiology 146, 2865–2875.
    [Google Scholar]
  2. Botes, D. P., Wessels, P. L., Kruger, H., Runnegar, M. T. C., Satikarn, S., Smith, R. J., Barba, J. C. J. & Williams, D. H. ( 1985; ). Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa. J Chem Soc Perkin Trans 1, 2747–2748.
    [Google Scholar]
  3. Brunberg, A. K. ( 1999; ). Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Lett 29, 13–22.[CrossRef]
    [Google Scholar]
  4. Burja, A. M., Banaigs, B., Abou-Mansour, E., Burgess, J. G. & Wright, P. C. ( 2001; ). Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57, 9347–9377.[CrossRef]
    [Google Scholar]
  5. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  6. Christiansen, G., Dittmann, E., Ordorika, L. V., Rippka, R., Herdman, M. & Börner, T. ( 2001; ). Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol 178, 452–458.
    [Google Scholar]
  7. Cohan, F. M. ( 2002; ). What are bacterial species? Annu Rev Microbiol 56, 457–487.[CrossRef]
    [Google Scholar]
  8. Erhard, M. ( 1999; ). Matrix assisted laser desorption/ionisation-time of flight Massenspektrometrie von Cyanobakterien und Untersuchungen zur Biosynthese und Funktion der Microcystine. Thesis, Technische Universität Berlin.
  9. Erhard, M., von Döhren, H. & Jungblut, P. ( 1999; ). Rapid identification of the new anabaenopeptin G from Planktothrix agardhii HUB 011 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13, 337–343.[CrossRef]
    [Google Scholar]
  10. Fastner, J., Erhard, M. & von Döhren, H. ( 2001; ). Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 67, 5069–5076.[CrossRef]
    [Google Scholar]
  11. Fastner, J., Codd, G. A., Metcalf, J. S., Woitke, P., Wiedner, C. & Utkilen, H. ( 2002; ). An international intercomparision exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal Bioanal Chem 374, 437–444.[CrossRef]
    [Google Scholar]
  12. Harada, K.-I., Ogawa, K., Matsuura, K. & 7 other authors ( 1991; ). Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. Toxicon 29, 479–489.[CrossRef]
    [Google Scholar]
  13. Harada, K.-I., Mayumi, T., Shimada, T., Suzuki, M., Kondo, F. & Watanabe, M. F. ( 1993; ). Occurrence of four depsipeptides, aeruginopeptins, together with microcystins from toxic cyanobacteria. Tetrahedron Lett 34, 6091–6094.[CrossRef]
    [Google Scholar]
  14. Ishida, K. & Murakami, M. ( 2000; ). Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J Org Chem 65, 5898–5900.[CrossRef]
    [Google Scholar]
  15. Ishida, K., Matsuda, H., Murakami, M. & Yamaguchi, K. ( 1997; ). Micropeptins 478-A and -B, plasmin inhibitors from the cyanobacterium Microcystis aeruginosa. J Nat Prod 60, 184–187.[CrossRef]
    [Google Scholar]
  16. Ishida, K., Kato, T., Murakami, M., Watanabe, M. & Watanabe, M. F. ( 2000; ). Microginins, zinc metalloproteases inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron 56, 8643–8656.[CrossRef]
    [Google Scholar]
  17. Itou, Y., Suzuki, S., Ishida, K. & Murakami, M. ( 1999; ). Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg Med Chem Lett 9, 1243–1246.[CrossRef]
    [Google Scholar]
  18. Janse, I., Meima, M., Kardinaal, W. E. A. & Zwart, G. ( 2003; ). High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electophoresis. Appl Environ Microbiol 69, 6634–6643.[CrossRef]
    [Google Scholar]
  19. Jongman, R. H. G., ter Braak, C. J. F. & van Tongeren, O. R. F. ( 1997; ). Data Analysis in Community and Landscape Analysis. Cambridge: Cambridge University Press.
  20. Karas, M., Glückmann, M. & Schäfer, J. ( 2000; ). Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35, 1–12.[CrossRef]
    [Google Scholar]
  21. Kaufmann, R., Spengler, B. & Lützenkirchen, F. ( 1993; ). Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom 7, 902–910.[CrossRef]
    [Google Scholar]
  22. Kiviranta, J., Namikoshi, M., Sivonen, K., Evans, W. R., Carmichael, W. W. & Rinehart, K. L. ( 1992; ). Structure determination and toxicity of a new microcystin from Microcystis aeruginosa strain 205. Toxicon 30, 1093–1098.[CrossRef]
    [Google Scholar]
  23. Komárek, J. & Anagnostidis, K. ( 1999; ). Cyanoprokaryota 1. Teil: Chroococcales. In Süwasserflora von Mitteleuropa. Edited by H. Ettl, G. Gärtner, H. Heynig & D. Mollenhauer. Jena: Gustav Fischer.
  24. Kurmayer, R. & Kutzenberger, T. ( 2003; ). Application of real-time PCR for quantification of microcystin genotypes in a population of the cyanobacterium Microcystis sp. Appl Environ Microbiol 69, 6723–6730.[CrossRef]
    [Google Scholar]
  25. Kurmayer, R., Dittmann, E., Fastner, J. & Chorus, I. ( 2002; ). Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43, 107–118.[CrossRef]
    [Google Scholar]
  26. Kusumi, T., Ooi, T., Watanabe, M. M., Takahashi, H. & Kakisawa, H. ( 1987; ). Cyanoviridin RR, a toxin from the cyanobacterium (blue-green alga) Microcystis viridis. Tetrahedron Lett 28, 4695–4698.[CrossRef]
    [Google Scholar]
  27. Lawton, L. A., Morris, L. A. & Jaspars, M. ( 1999; ). A bioactive modified peptide, aeruginosinamide, isolated from the cyanobacterium Microcystis aeruginosa. J Org Chem 64, 5329–5332.[CrossRef]
    [Google Scholar]
  28. Li, L., Garden, R. W., Romanova, E. V. & Sweedler, J. V. ( 1999; ). In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. Anal Chem 71, 5451–5458.[CrossRef]
    [Google Scholar]
  29. Ling, Y.-C., Lin, L. & Chen, Y.-T. ( 1998; ). Quantitative analysis of antibiotics by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12, 317–327.[CrossRef]
    [Google Scholar]
  30. Martin, C., Oberer, L., Ino, T., König, W. A., Busch, M. & Weckesser, J. ( 1993; ). Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J Antibiot 46, 1550–1556.[CrossRef]
    [Google Scholar]
  31. Matsuda, H., Okino, T., Murakami, M. & Yamaguchi, K. ( 1996; ). Aeruginosins 102-A and B, new thrombin inhibitors from the cyanobacterium Microcystis viridis (NIES-102). Tetrahedron 52, 14501–14506.[CrossRef]
    [Google Scholar]
  32. Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K. & Jakobsen, K. S. ( 2003; ). Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185, 2774–2785.[CrossRef]
    [Google Scholar]
  33. Murakami, M., Ishida, K., Okino, T., Okita, Y., Matsuda, H. & Yamaguchi, K. ( 1995; ). Aeruginosins 98-A and B, trypsin inhibitors from the blue-green alga Microcystis aeruginosa (NIES-98). Tetrahedron Lett 36, 2785–2788.[CrossRef]
    [Google Scholar]
  34. Murakami, M., Shin, H. J., Matsuda, H., Ishida, K. & Yamaguchi, K. ( 1997; ). A cyclic peptide, anabaenopeptin B, from the cyanobacterium Oscillatoria agardhii. Phytochemistry 44, 449–452.[CrossRef]
    [Google Scholar]
  35. Namikoshi, M. & Rinehart, K. L. ( 1996; ). Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17, 373–384.[CrossRef]
    [Google Scholar]
  36. Namikoshi, M., Sun, F., Choi, B. W., Rinehart, K. L., Carmichael, W. W., Evans, W. R. & Beasley, V. R. ( 1995; ). Seven more microcystins from Homer Lake cells: application of the general method for structure assignment of peptides with -dehydroamino acid unit(s). J Org Chem 60, 3671–3679.[CrossRef]
    [Google Scholar]
  37. Neilan, B. A., Jacobs, D. & Goodman, A. E. ( 1995; ). Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61, 3875–3883.
    [Google Scholar]
  38. Neilan, B. A., Jacobs, D., DelDot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T. & Goodman, A. E. ( 1997; ). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47, 693–697.[CrossRef]
    [Google Scholar]
  39. Neumann, U., Forchert, A., Flury, T. & Weckesser, J. ( 1997; ). Microginin FR1, a linear peptide from a water bloom of Microcystis aeruginosa. FEMS Microbiol Lett 153, 475–478.[CrossRef]
    [Google Scholar]
  40. Okino, T., Murakami, M., Haraguchi, R., Munekata, H. & Matsuda, H. (1993; ). Micropeptins A and B, plasmin and trypsin inhibitors from the blue green alga Microcystis aeruginosa. Tetrahedron Lett 34, 8131–8134.[CrossRef]
    [Google Scholar]
  41. Otsuka, S., Suda, S., Li, R. H., Watanabe, M., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. ( 1998; ). 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 164, 119–124.[CrossRef]
    [Google Scholar]
  42. Otsuka, S., Suda, S., Li, R. H., Watanabe, M., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. ( 1999; ). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172, 15–21.[CrossRef]
    [Google Scholar]
  43. Otsuka, S., Suda, S., Li, R., Matsumoto, S. & Watanabe, M. M. ( 2000; ). Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46, 39–50.[CrossRef]
    [Google Scholar]
  44. Otsuka, S., Suda, S., Shibata, S., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. ( 2001; ). A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the Rules of the Bacteriological Code. Int J Syst Evol Microbiol 51, 873–879.[CrossRef]
    [Google Scholar]
  45. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. ( 1998; ). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180, 3453–3461.
    [Google Scholar]
  46. Shin, H. J., Matsuda, H., Murakami, M. & Yamaguchi, K. ( 1998; ). Anabaenopeptins E and F, two new cyclic peptides from the cyanobacterium Oscillatoria agardhii (NIES-204). J Nat Prod 60, 139–141.
    [Google Scholar]
  47. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. ( 1999; ). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505.[CrossRef]
    [Google Scholar]
  48. Stanier, R. Y., Sistrom, W. R., Hansen, T. A. & 9 other authors ( 1978; ). Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the international code of nomenclature of bacteria. Int J Syst Bacteriol 28, 335–336.[CrossRef]
    [Google Scholar]
  49. ter Braak, C. J. F. & Smilauer, P. ( 1998; ). CANOCO reference manual and user's guide to CANOCO for Windows. Ithaca, USA: Microcomputer Power.
  50. Tsukamoto, S., Painuly, P., Young, K., Yang, X. & Shimizu, Y. ( 1993; ). Microcystilide A: a novel cell-differentiation-promoting depsipeptide from Microcystis aeruginosa NO-15-1840. J Am Chem Soc 115, 11046–11047.[CrossRef]
    [Google Scholar]
  51. von Döhren, H., Keller, U., Vater, J. & Zocher, R. ( 1997; ). Multifunctional peptide synthetases. Chem Rev 97, 2675–2705.[CrossRef]
    [Google Scholar]
  52. Welker, M., Fastner, J., Erhard, M. & von Döhren, H. ( 2002; ). Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17, 367–374.[CrossRef]
    [Google Scholar]
  53. Welker, M., von Döhren, H., Täuscher, H., Steinberg, C. E. W. & Erhard, M. ( 2003; ). Toxic Microcystis in shallow lake Müggelsee (Germany) – dynamic, distribution, diversity. Arch Hydrobiol 157, 227–248.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26947-0
Loading
/content/journal/micro/10.1099/mic.0.26947-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error