1887

Abstract

is the causative agent of trichomoniasis, one of the most common sexually transmitted diseases in humans. This protozoan has multiple proteinases that are mainly of the cysteine proteinase (CP) type, some of which are known to be involved in the parasite's virulence. Here, a novel CP-encoding gene, , was identified and characterized. is 948 bp long and encodes a predicted 34·4 kDa protein that has the characteristics of the papain-like CP family. TvCP12 does not appear to have a signal peptide, suggesting that this is a cytoplasmic CP. By Southern blot assays, the gene was found as a single copy in the genome. Remarkably, Northern blot experiments showed a single transcript band of ∼1·3 kb in the mRNA obtained from parasites grown in low iron conditions and no transcript was observed in the mRNA from parasites grown in high iron conditions. By RT-PCR assays, a 270 bp band was amplified from the cDNA of parasites grown in low iron medium, which was very faint when cDNA from parasites grown in high iron conditions was used. Transcripts of the 3′ region obtained in both iron conditions presented differences in their poly(A) tail length. These data suggest that is another gene that is negatively regulated by iron and that the length of the poly(A) tail may be one of the factors involved in the iron-modulated protein expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26927-0
2004-05-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501131.html?itemId=/content/journal/micro/10.1099/mic.0.26927-0&mimeType=html&fmt=ahah

References

  1. Alderete J. F., Provenzano D., Lehker M. W. 1995; Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog 19:93–103 [CrossRef]
    [Google Scholar]
  2. Alderete J. F., Engbring J., Lauriano C. M., O'Brien J. L. 1998; Only two of the Trichomonas vaginalis triplet AP51 adhesins are regulated by iron. Microb Pathog 24:1–16 [CrossRef]
    [Google Scholar]
  3. Álvarez-Sánchez M. E., Ávila-González L., Becerril-García C., Fattel-Facenda L. V., Ortega-López J., Arroyo R. 2000; A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 28:193–202 [CrossRef]
    [Google Scholar]
  4. Arroyo R., Alderete J. F. 1989; Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun 57:2991–2997
    [Google Scholar]
  5. Arroyo R., Alderete J. F. 1995; Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch Med Res 26:279–285
    [Google Scholar]
  6. Arroyo R., Engbring J. A., Nguyen J., Musatovova O., Lopez O., Laureano C., Alderete J. F. 1995; Characterization of cDNAs encoding adhesins proteins involved in Trichomonas vaginalis cytoadherence. Arch Med Res 26:361–369
    [Google Scholar]
  7. Ausubel F., Brent R., Kingston R., Moore D., Seidman J. G., Smith J., Struhl K. 1999 Current Protocols in Molecular Biology vol. 1 New York: Wiley;
  8. Barrett A. J. 1994; Classification of peptidases. Methods Enzymol 244:1–15
    [Google Scholar]
  9. Barrett A. J., Rawlings N. D., Woessner J. F. (editors) 1998 Handbook of Proteolytic Enzymes New York: Academic Press;
  10. Bruchhaus I., Loftus B. J., Hall N., Tannich E. 2003; The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. Eukaryot Cell 2:501–509 [CrossRef]
    [Google Scholar]
  11. Caput D., Beutler B., Hartoy K., Thayer R., Brown-Shimer S., Cerami A. 1986; Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83:1670–1674 [CrossRef]
    [Google Scholar]
  12. Crouch M. V., Alderete J. F. 2001; Trichomonas vaginalis has two fibronectin-like iron-regulated genes. Arch Med Res 32:102–107 [CrossRef]
    [Google Scholar]
  13. Dailey D. C., Chang T. H., Alderete J. F. 1990; Characterization of Trichomonas vaginalis haemolysis. Parasitology 101:171–175 [CrossRef]
    [Google Scholar]
  14. Decker C. J., Parker R. 1995; Diversity of cytoplasmic functions for the 3′ untranslated region of eukaryotic transcripts. Curr Opin Cell Biol 7:386–392 [CrossRef]
    [Google Scholar]
  15. Diamond L. S. 1957; The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490
    [Google Scholar]
  16. Draper D., Donohoe W., Mortimer L., Heine R. P. 1998; Cysteine proteases of Trichomonas vaginalis degrade secretory leukocyte protease inhibitor. J Infect Dis 178:815–819 [CrossRef]
    [Google Scholar]
  17. Engbring J. A., O'Brien J. L., Alderete J. F. 1996; Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 408:207–223
    [Google Scholar]
  18. Espinosa N., Hernández R., López-Griego L., Arroyo R., López-Villaseñor I. 2001; Differences between coding and non-coding regions in the Trichomonas vaginalis genome: an actin gene as a locus model. Acta Trop 78:147–154 [CrossRef]
    [Google Scholar]
  19. Espinosa N., Hernández R., López-Griego L., López-Villaseñor I. 2002; Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene 289:81–86 [CrossRef]
    [Google Scholar]
  20. Fiori P. L., Rappelli P., Addis M. F., Mannu F., Cappuccinelli P. 1997; Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infect Immun 65:5142–5148
    [Google Scholar]
  21. García A. F., Chang T. H., Benchimol M., Klumpp D. J., Lehker M. W., Alderete J. F. 2003; Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol Microbiol 47:1207–1224 [CrossRef]
    [Google Scholar]
  22. García-Rivera G., Rodríguez M. A., Ocadiz R., Martinez-Lopez M. C., Arroyo R., Gonzalez-Robles A., Orozco E. 1999; Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein. Mol Microbiol 33:556–568 [CrossRef]
    [Google Scholar]
  23. Gorrell T. E. 1985; Effect of culture medium content on the biochemical composition and metabolism of Trichomonas vaginalis. J Bacteriol 161:1228–1230
    [Google Scholar]
  24. Griffith E. 1985; Iron in biological systems. In Iron and Infection: Molecular, Physiological and Clinical Aspects pp. 1–25Edited by Bull J. J., Griffith E. New York: Wiley;
    [Google Scholar]
  25. Hilley J. D., Zawadzki J. L., MaConville M. J., Coombs G. H., Mottram J. C. 2000; Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI) : protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins. Mol Biol Cell 11:1183–1195 [CrossRef]
    [Google Scholar]
  26. Klemba M., Goldberg D. E. 2002; Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71:275–305 [CrossRef]
    [Google Scholar]
  27. Lehker M. W., Alderete J. F. 1992; Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol 6:123–132 [CrossRef]
    [Google Scholar]
  28. Lehker M. W., Chang T. H., Dailey D. C., Alderete J. F. 1990; Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. J Exp Med 171:2165–2170 [CrossRef]
    [Google Scholar]
  29. Lehker M. W., Arroyo R., Alderete J. F. 1991; The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J Exp Med 174:311–318 [CrossRef]
    [Google Scholar]
  30. León-Felix J., Ortega-López J., Orozco-Solis R., Arroyo R. 2004; Two novel asparaginyl endopeptidase-like cysteine proteinases from the protist Trichomonas vaginalis: their evolutive relationship within the clan CD cysteine proteinases. Gene (in press
    [Google Scholar]
  31. León-Sicairos C. R., Pérez-Martínez I., Álvarez-Sánchez M. E., López-Villaseñor I., Arroyo R. 2003; Two Trichomonas vaginalis loci encoding for distinct cysteine proteinases show a genomic linkage with putative inositol hexakisphosphate kinase (IP6K2) or an ABC transporter gene. J Eukaryot Microbiol 50:702–705 [CrossRef]
    [Google Scholar]
  32. Liston D. R., Johnson P. J. 1999; Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol Cell Biol 19:2380–2388
    [Google Scholar]
  33. López-Camarillo C., Luna-Arias J. P., Marchat L. A., Orozco E. 2003; EhPgp5 mRNA stability is a regulatory event in the Entamoeba histolytica multidrug resistance phenotype. J Biol Chem 278:11273–11280 [CrossRef]
    [Google Scholar]
  34. Mallinson D. J., Lockwood B. C., Coombs G. H., North M. J. 1994; Identification and molecular cloning of four cysteine proteinase genes from the pathogenic protozoan Trichomonas vaginalis. Microbiology 140:2725–2735 [CrossRef]
    [Google Scholar]
  35. McKerrow J. H., Engel J. C., Caffrey C. R. 1999; Cysteine proteinase inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 7:639–644 [CrossRef]
    [Google Scholar]
  36. Mendoza-López M. R., Becerril-García C., Fattel-Facenda L. V., Ávila-González L., Ruiz-Tachiquín M. E., Ortega-López J., Arroyo R. 2000; CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun 68:4907–4912 [CrossRef]
    [Google Scholar]
  37. Mottram J. C., Souza A. E., Hutchinson J. E., Carter R., Frame M. J., Coombs G. H. 1996; Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A 93:6008–6013 [CrossRef]
    [Google Scholar]
  38. Neale K., Alderete J. F. 1990; Analysis of the proteinases of representative Trichomonas vaginalis isolates. Infect Immun 58:157–162
    [Google Scholar]
  39. North M. J., Mottram J. C., Coombs G. H. 1990; Cysteine proteinase of parasitic protozoa. Parasitol Today 6:270–275 [CrossRef]
    [Google Scholar]
  40. Peterson K. M., Alderete J. F. 1984; Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. . J Exp Med 160:398–410 [CrossRef]
    [Google Scholar]
  41. Provenzano D., Alderete J. F. 1995; Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infect Immun 63:3388–3395
    [Google Scholar]
  42. Ross J. 1995; mRNA stability in mammalian cells. Microbiol Rev 59:423–450
    [Google Scholar]
  43. Ross J. 1996; Control of messenger RNA stability in higher eukaryotes. Trends Genet 12:171–175 [CrossRef]
    [Google Scholar]
  44. Sajid M., McKerrow J. H. 2002; Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21 [CrossRef]
    [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  46. Shaw G., Kamen R. 1986; A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667 [CrossRef]
    [Google Scholar]
  47. Tsai C. D., Liu H. W., Tai J. H. 2002; Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. J Biol Chem 277:5153–5162 [CrossRef]
    [Google Scholar]
  48. Wilson M. E., Britigan B. E. 1998; Iron acquisition by parasitic protozoa. Parasitol Today 14:348–353 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26927-0
Loading
/content/journal/micro/10.1099/mic.0.26927-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error