Pst1p was previously identified as a protein secreted by yeast regenerating protoplasts, which suggests a role in cell wall construction. encodes a protein homologous to Pst1p, and both of them display typical features of GPI-anchored proteins and a characteristic receptor L-domain. Pst1p and Ecm33p are both localized to the cell surface, Pst1p being at the cell membrane and possibly also in the periplasmic space. Here, the characterization of Δ, Δ and Δ Δ mutants is described. Deletion of leads to a weakened cell wall, and this defect is further aggravated by simultaneous deletion of . As a result, the Δ mutant displays increased levels of activated Slt2p, the MAP kinase of the cell integrity pathway, and relies on a functional Slt2-mediated cell integrity pathway to ensure viability. Analyses of model glycosylated proteins show glycosylation defects in the Δ mutant. Ecm33p is also important for proper cell wall ultrastructure organization and, furthermore, for the correct assembly of the mannoprotein outer layer of the cell wall. Pst1p seems to act in the compensatory mechanism activated upon cell wall damage and, in these conditions, may partially substitute for Ecm33p.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ausubel, F. M., Kingston, R. E., Brent, R., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K.(1993).Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley Interscience.
  2. Ballou, C. E.(1990). Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185, 440–470. [Google Scholar]
  3. Ballou, L., Hitzeman, R. A., Lewis, M. S. & Ballou, C. E.(1991). Vanadate-resistant yeast mutants are defective in protein glycosylation. Proc Natl Acad Sci U S A 88, 3209–3212.[CrossRef] [Google Scholar]
  4. Benachour, A., Sipos, G., Flury, I., Reggiori, F., Canivenc-Gansel, E., Vionnet, C., Conzelmann, A. & Benghezal, M.(1999). Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J Biol Chem 274, 15251–15261.[CrossRef] [Google Scholar]
  5. Bidlingmaier, S. & Snyder, M.(2002). Large-scale identification of genes important for apical growth in Saccharomyces cerevisiae by directed allele replacement technology (DART) screening. Funct Integr Genomics 1, 345–356.[CrossRef] [Google Scholar]
  6. Bordier, C.(1981). Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256, 1604–1607. [Google Scholar]
  7. Bruneau, J. M., Magnin, T., Tagat, E., Legrand, R., Bernard, M., Diaquin, M., Fudali, C. & Latgé, J.-P.(2001). Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22, 2812–2823.[CrossRef] [Google Scholar]
  8. Bussey, H.(1991). K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5, 2339–2343.[CrossRef] [Google Scholar]
  9. Cabib, E., Roh, D.-H., Schmidt, M., Crotti, L. B. & Varma, A.(2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276, 19679–19682.[CrossRef] [Google Scholar]
  10. Caro, L. H. P., Tettelin, H., Vossen, J. H., Ram, A. F. J., Van den Ende, H. & Klis, F. M.(1997).In silicio identification of glycosyl-phosphatidylinositol-anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477–1489.[CrossRef] [Google Scholar]
  11. Chavan, M., Suzuki, T., Rekowicz, M. & Lennarz, W.(2003). Genetic, biochemical and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall β1,6-glucan of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100, 15381–15386.[CrossRef] [Google Scholar]
  12. Cid, V. J., Durán, A., del Rey, F., Snyder, M. P., Nombela, C. & Sánchez, M.(1995). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386. [Google Scholar]
  13. Colman-Lerner, A., Chin, T. E. & Brent, R.(2001). Yeast cbk1 and mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739–750.[CrossRef] [Google Scholar]
  14. Conde, R., Pablo, G., Cueva, R. & Larriba, G.(2003). Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast 20, 1189–1211.[CrossRef] [Google Scholar]
  15. Conzelmann, A., Spiazzi, A., Hyman, R. & Bron, C.(1986). Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells. EMBO J 5, 3291–3296. [Google Scholar]
  16. Conzelmann, A., Riezman, H., Desponds, C. & Bron, C.(1988). A major 125-kd membrane glycoprotein of Saccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid. EMBO J 7, 2233–2240. [Google Scholar]
  17. Dean, N.(1995). Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A 92, 1287–1291.[CrossRef] [Google Scholar]
  18. de Groot, P. W., Ruíz, C., Vázquez de Aldana, C. R. & 14 other authors(2001). A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2, 1–19.[CrossRef] [Google Scholar]
  19. de Nobel, H., Ruiz, C., Martín, H., Morris, W., Brul, S., Molina, M. & Klis, F. M.(2000). Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146, 2121–2132. [Google Scholar]
  20. de Sampaïo, G., Bourdineaud, J. P. & Lauquin, G. J. M.(1999). A constitutive role for GPI anchors in Saccharomyces cerevisiae: cell wall targeting. Mol Microbiol 34, 247–256.[CrossRef] [Google Scholar]
  21. Ecker, M., Hagen, I., Sestak, S., Strahl-Bolsinger, S., Mrsă, V. & Tanner, W.(2003). News from the covalently linked cell wall protein Ccw5/Pir4. Poster at II International Conference on Molecular Mechanisms of Fungal Cell Wall Biogenesis. Salamanca, Spain.
  22. Garí, E., Piedrafita, L., Aldea, M. & Herrero, E.(1997). A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837–848.[CrossRef] [Google Scholar]
  23. Garrett, T. P., McKern, N. M., Lou, M., Frenkel, M. J., Bentley, J. D., Lovrecz, G. O., Elleman, T. C., Cosgrove, L. J. & Ward, C. W.(1998). Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394, 395–399.[CrossRef] [Google Scholar]
  24. Garrett-Engele, P., Moilanen, B. & Cyert, M. S.(1995). Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol Cell Biol 15, 4103–4114. [Google Scholar]
  25. Hamada, K., Fukuchi, S., Arisawa, M., Baba, M. & Kitada, K.(1998a). Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol Gen Genet 258, 53–59.[CrossRef] [Google Scholar]
  26. Hamada, K., Terashima, H., Arisawa, M. & Kitada, K.(1998b). Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273, 26946–26953.[CrossRef] [Google Scholar]
  27. Hamada, K., Terashima, H., Arisawa, M., Yabuki, N. & Kitada, K.(1999). Amino acid residues in the ω-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181, 3886–3889. [Google Scholar]
  28. Hutchins, K. & Bussey, H.(1983). Cell wall receptor for yeast killer toxin: involvement of (1→6)-beta-d-glucan. J Bacteriol 154, 161–169. [Google Scholar]
  29. Jung, U. S. & Levin, D. E.(1999). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34, 1049–1057.[CrossRef] [Google Scholar]
  30. Kanik-Ennulat, C., Montalvo, E. & Neff, N.(1995). Sodium orthovanadate-resistant mutants of Saccharomyces cerevisiae show defects in Golgi-mediated protein glycosylation, sporulation and detergent resistance. Genetics 140, 933–943. [Google Scholar]
  31. Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N. & Klis, F. M.(1996). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6, 337–345.[CrossRef] [Google Scholar]
  32. Kapteyn, J. C., Ram, A. F., Groos, E. M., Kollar, R., Montijn, R. C., Van den Ende, H., Llobell, A., Cabib, E. & Klis, F. M.(1997). Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β1,3-glucan content. J Bacteriol 179, 6279–6284. [Google Scholar]
  33. Kapteyn, J. C., Van den Ende, H. & Klis, F. M.(1999a). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426, 373–383.[CrossRef] [Google Scholar]
  34. Kapteyn, J. C., van Egmond, P., Sievi, E., Van den Ende, H., Makarow, M. & Klis, F. M.(1999b). The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and β1,6-glucan-deficient mutants. Mol Microbiol 31, 1835–1844.[CrossRef] [Google Scholar]
  35. Klis, F. M.(1994). Review: cell wall assembly in yeast. Yeast 10, 851–869.[CrossRef] [Google Scholar]
  36. Klis, F. M., Ram, A. F. J., Montijn, R. C., Kapteyn, J. C., Caro, L. H. P., Vossen, J. H., Van Berkel, M. A. A., Brekelmans, S. S. C. & Van den Ende, H.(1998). Posttranslational modifications of secretory proteins. In Yeast Gene Analysis, vol. 26, pp. 223–238. Edited by A. J. P. Brown & M. F. Tuite. Amsterdam: Academic Press.
  37. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S.(2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239–256.[CrossRef] [Google Scholar]
  38. Kollár, R., Petrakova, E., Ashwell, G., Robbins, P. W. & Cabib, E.(1995). Architecture of the yeast cell wall. The linkage between chitin and β(1→3)-glucan. J Biol Chem 270, 1170–1178.[CrossRef] [Google Scholar]
  39. Kollár, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E.(1997). Architecture of the yeast cell wall. β(1→6)-glucan interconnects mannoprotein, β(1→3)-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef] [Google Scholar]
  40. Kopecka, M. & Gabriel, M.(1992). The influence of congo red on the cell wall and (1→3)-beta-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158, 115–126.[CrossRef] [Google Scholar]
  41. Kumar, A., Cheung, K. H., Ross-Macdonald, P., Coelho, P. S., Miller, P. & Snyder, M.(2000).triples: a database of gene function in Saccharomyces cerevisiae. Nucleic Acids Res 28, 81–84.[CrossRef] [Google Scholar]
  42. Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D. & Francois, J.(2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278, 20345–20357.[CrossRef] [Google Scholar]
  43. Lee, K. S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K. & Levin, D. E.(1993). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13, 3067–3075. [Google Scholar]
  44. Lipke, P. N. & Ovalle, R.(1998). Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180, 3735–3740. [Google Scholar]
  45. Lussier, M., White, A. M., Sheraton, J. & 17 other authors(1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147, 435–450. [Google Scholar]
  46. Martín, H., Arroyo, J., Sánchez, M., Molina, M. & Nombela, C.(1993). Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol Gen Genet 241, 177–184. [Google Scholar]
  47. Martín, H., Rodríguez-Pachón, J. M., Ruíz, C., Nombela, C. & Molina, M.(2000). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef] [Google Scholar]
  48. Miret, J. J., Solari, A. J., Barderi, P. A. & Goldemberg, S. H.(1992). Polyamines and cell wall organization in Saccharomyces cerevisiae. Yeast 8, 1033–1041.[CrossRef] [Google Scholar]
  49. Molina, M., Gil, C., Pla, J., Arroyo, J. & Nombela, C.(2000). Protein localisation approaches for understanding yeast cell wall biogenesis. Microsc Res Tech 51, 601–612.[CrossRef] [Google Scholar]
  50. Monteoliva, L., Matas, M. L., Gil, C., Nombela, C. & Pla, J.(2002). Large-scale identification of putative exported proteins in Candida albicans by genetic selection. Eukaryot Cell 1, 514–525.[CrossRef] [Google Scholar]
  51. Montijn, R. C., van Rinsum, J., van Schagen, F. A. & Klis, F. M.(1994). Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain. J Biol Chem 269, 19338–19342. [Google Scholar]
  52. Mrsă, V., Seidl, T., Gentzsh, M. & Tanner, W.(1997). Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13, 1145–1154.[CrossRef] [Google Scholar]
  53. Orlean, P.(1997). Biogenesis of yeast cell wall and surface components. In The Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Biology, pp. 229–362. Edited by J. R. Pringle, J. R. Broach & E. W. Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  54. Pardo, M., Monteoliva, L., Pla, J., Sanchez, M., Gil, C. & Nombela, C.(1999). Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 15, 459–472.[CrossRef] [Google Scholar]
  55. Pardo, M., Ward, M., Bains, S., Molina, M., Blackstock, W., Gil, C. & Nombela, C.(2000). A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21, 3396–3410.[CrossRef] [Google Scholar]
  56. Percival-Smith, A. & Segall, I.(1987). Increased copy number of the 5′ end of the SPS2 gene inhibits sporulation of Saccharomyces cerevisiae. Mol Cell Biol 7, 2484–2490. [Google Scholar]
  57. Pringle, J. R., Adams, A. E. M., Drubin, D. G. & Haarer, B. K.(1991). Immunofluorescence methods for yeast. In Guide to Yeast Genetics and Molecular Biology, pp. 565–602. Edited by C. Guthrie & G. R. Fink. London: Academic Press.
  58. Ram, A. F., Kapteyn, J. C., Montijn, R. C., Caro, L. H., Douwes, J. E., Baginsky, W., Mazur, P., Van den Ende, H. & Klis, F. M.(1998). Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180, 1418–1424. [Google Scholar]
  59. Reddy, V. A., Johnson, R. S., Biemann, K., Williams, R. S., Ziegler, F. D., Trimble, R. B. & Maley, F.(1988). Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem 263, 6978–6985. [Google Scholar]
  60. Richard, M., de Groot, P., Courtin, O., Poulain, D., Klis, F. & Gaillardin, C.(2002).GPI7 affects cell wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology 148, 2125–2133. [Google Scholar]
  61. Rodríguez-Peña, J. M., Cid, V. J., Arroyo, J. & Nombela, C.(2000). A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20, 3245–3255.[CrossRef] [Google Scholar]
  62. Roemer, T., Paravicini, G., Payton, M. A. & Bussey, H.(1994). Characterization of the yeast (1-6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127, 567–579.[CrossRef] [Google Scholar]
  63. Roncero, C. & Durán, A.(1985). Effect of Calcofluor White and Congo Red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163, 1180–1185. [Google Scholar]
  64. Ross-Macdonald, P., Coelho, P. S., Roemer, T. & 15 other authors(1999). Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418.[CrossRef] [Google Scholar]
  65. Ruíz, C., Cid, V. J., Lussier, M., Molina, M. & Nombela, C.(1999). A large-scale sonication assay for cell wall mutant analysis in yeast. Yeast 15, 1001–1008.[CrossRef] [Google Scholar]
  66. Russo, P., Kalkkinen, N., Sareneva, H., Paakkola, J. & Makarow, M.(1992). A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci U S A 89, 3671–3675.[CrossRef] [Google Scholar]
  67. Shahinian, S. & Bussey, H.(2000).β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35, 477–489. [Google Scholar]
  68. Souciet, J., Aigle, M., Artiguenave, F. & 22 other authors(2000). Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487, 3–12.[CrossRef] [Google Scholar]
  69. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B.(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.[CrossRef] [Google Scholar]
  70. Terashima, H., Yabuki, N., Fukuchi, S., Hamada, K., Arisawa, M. & Kitada, K.(1999). Yeast genes induced by defects of the glucan biosynthesis. Curr Genet 35, 444. [Google Scholar]
  71. Terashima, H., Hamada, K. & Kitada, K.(2003). The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS Microbiol Lett 218, 175–180.[CrossRef] [Google Scholar]
  72. Toh-E, A. & Oguchi, T.(2002). Genetic characterization of genes encoding enzymes catalyzing addition of phospho-ethanolamine to the glycosylphosphatidylinositol anchor in Saccharomyces cerevisiae. Genes Genet Syst 77, 309–322.[CrossRef] [Google Scholar]
  73. Tong, A. H., Lesage, G., Bader, G. D. & 47 other authors(2004). Global mapping of the yeast genetic interaction network. Science 303, 808–813.[CrossRef] [Google Scholar]
  74. Tougan, T., Chiba, Y., Kakihara, Y., Hirata, A. & Nojima, H.(2002). Meu10 is required for spore wall maturation in Schizosaccharomyces pombe. Genes Cells 7, 217–231.[CrossRef] [Google Scholar]
  75. Turchini, A., Ferrario, L. & Popolo, L.(2000). Increase of external osmolarity reduces morphogenetic defects and accumulation of chitin in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 182, 1167–1171.[CrossRef] [Google Scholar]
  76. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P.(1994). New heterologous modules for classical or PCR-band gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.[CrossRef] [Google Scholar]
  77. Winston, F., Dollard, C. & Ricupero-Hovasse, S. L.(1995). Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53–55.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error