1887

Abstract

The opportunistic fungal pathogen has the ability to exploit diverse host environments and can either reside commensally or cause disease. In order to adapt to its new environment it must respond to new physical conditions, nutrient sources, and the host immune response. This requires the co-regulation of multiple signalling networks. The 14-3-3 family of proteins is highly conserved in all eukaryotic species. These proteins regulate signalling pathways involved in cell survival, the cell cycle, and differentiation, and effect their functions via interactions with phosphorylated serines/threonines. In there is only one 14-3-3 protein, Bmh1p, and it is required for vegetative growth and optimal filamentation. In order to dissect separate functions of Bmh1p in , site-directed nucleotide substitutions were made in the gene based on studies in other species. Putative temperature-sensitive, ligand-binding and dimerization mutants were constructed. In addition two mutant strains identified through random mutagenesis were analysed. All five mutant strains demonstrated varying defects in growth and filamentation. This paper begins to segregate functions of Bmh1p that are required for optimal growth and the different filamentation pathways. These mutant strains will allow the identification of 14-3-3 target interactions and correlate the individual functions of Bmh1p to cellular processes involved in pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26910-0
2004-06-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501911.html?itemId=/content/journal/micro/10.1099/mic.0.26910-0&mimeType=html&fmt=ahah

References

  1. Aitken, A. ( 2002; ). Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol 50, 993–1010.[CrossRef]
    [Google Scholar]
  2. Aitken, A., Baxter, H., Dubois, T., Clokie, S., Mackie, S., Mitchell, K., Peden, A. & Zemlickova, E. ( 2002a; ). Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans 30, 351–360.
    [Google Scholar]
  3. Aitken, A., Baxter, H., Dubois, T., Clokie, S., Mackie, S., Mitchell, K., Peden, A. & Zemlickova, E. ( 2002b; ). 14-3-3 proteins in cell regulation. Biochem Soc Trans 30, 351–364.
    [Google Scholar]
  4. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C. & Pla, J. ( 2003; ). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2, 351–361.[CrossRef]
    [Google Scholar]
  5. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  6. Backen, A. C., Broadbent, I. D., Fetherston, R. W., Rosamond, J. D., Schnell, N. F. & Stark, M. J. ( 2000; ). Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 16, 1121–1129.[CrossRef]
    [Google Scholar]
  7. Beck, T. & Hall, M. N. ( 1999; ). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692.[CrossRef]
    [Google Scholar]
  8. Beheshti, F., Smith, A. G. & Krause, G. W. ( 1975; ). Germ tube and chlamydospore formation by Candida albicans on a new medium. J Clin Microbiol 2, 345–348.
    [Google Scholar]
  9. Bensen, E. S., Filler, S. G. & Berman, J. ( 2002; ). A Forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1, 787–798.[CrossRef]
    [Google Scholar]
  10. Berman, J. & Sudbery, P. E. ( 2002; ). Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918–930.
    [Google Scholar]
  11. Bertram, P. G., Zeng, C., Thorson, J., Shaw, A. S. & Zheng, X. F. ( 1998; ). The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. Curr Biol 8, 1259–1267.[CrossRef]
    [Google Scholar]
  12. Brown, A. J. ( 2002; ). Morphogenetic signaling pathways in Candida albicans. In Candida and Candidiasis, pp. 95–106. Edited by R. Calderone. Washington, DC: American Society for Microbiology.
  13. Brown, D. H., Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. ( 1999; ). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34, 651–662.[CrossRef]
    [Google Scholar]
  14. Burke, D., Dawson, D. & Stearns, T. ( 2000; ). Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  15. Care, R. S., Trevethick, J., Binley, K. M. & Sudbery, P. E. ( 1999; ). The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34, 792–798.[CrossRef]
    [Google Scholar]
  16. Chen, L., Liu, T. H. & Walworth, N. C. ( 1999; ). Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage. Genes Dev 13, 675–685.[CrossRef]
    [Google Scholar]
  17. Chen, M. S., Ryan, C. E. & Piwnica-Worms, H. ( 2003; ). Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23, 7488–7497.[CrossRef]
    [Google Scholar]
  18. Cognetti, D., Davis, D. & Sturtevant, J. ( 2002; ). The Candida albicans 14-3-3 gene, BMH1, is essential for growth. Yeast 19, 55–67.[CrossRef]
    [Google Scholar]
  19. Cole, G. T., Seshan, K. R., Phaneuf, M. & Lynn, K. T. ( 1991; ). Chlamydospore-like cells of Candida albicans in the gastrointestinal tract of infected, immunocompromised mice. Can J Microbiol 37, 637–646.[CrossRef]
    [Google Scholar]
  20. Ferl, R. J., Manak, M. S. & Reyes, M. F. ( 2002; ). The 14-3-3s. Genome Biol 3, REVIEWS3010.
    [Google Scholar]
  21. Ford, J. C., al-Khodairy, F., Fotou, E., Sheldrick, K. S., Griffiths, D. J. & Carr, A. M. ( 1994; ). 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science 265, 533–535.[CrossRef]
    [Google Scholar]
  22. Gelperin, D., Weigle, J., Nelson, K., Roseboom, P., Irie, K., Matsumoto, K. & Lemmon, S. ( 1995; ). 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92, 11539–11543.[CrossRef]
    [Google Scholar]
  23. Gelperin, D., Horton, L., DeChant, A., Hensold, J. & Lemmon, S. K. ( 2002; ). Loss of ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast. Genetics 161, 1453–1464.
    [Google Scholar]
  24. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
    [Google Scholar]
  25. Giusani, A. D., Vinces, M. & Kumamoto, C. A. ( 2002; ). Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160, 1749–1753.
    [Google Scholar]
  26. Guthrie, C. & Fink, G. ( 1991; ). Guide to Yeast Genetics and Molecular Biology. New York: Academic Press.
  27. Ishiguro, J., Shimada, S., Gabriel, M. & Kopecka, M. ( 2001; ). Characterization of a fission yeast mutant which displays defects in cell wall integrity and cytokinesis. Genes Genet Syst 76, 257–269.[CrossRef]
    [Google Scholar]
  28. Kitamura, K., Katayama, S., Dhut, S., Sato, M., Watanabe, Y., Yamamoto, M. & Toda, T. ( 2001; ). Phosphorylation of Mei2 and Ste11 by Pat1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14-3-3 protein in fission yeast. Dev Cell 1, 389–399.[CrossRef]
    [Google Scholar]
  29. Lengeler, K. B., Davidson, R. C., D'Souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M. & Heitman, J. ( 2000; ). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64, 746–785.[CrossRef]
    [Google Scholar]
  30. Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. & Liddington, R. ( 1995; ). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191–194.[CrossRef]
    [Google Scholar]
  31. Liu, Z., Sekito, T., Spirek, M., Thornton, J. & Butow, R. A. ( 2003; ). Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12, 401–411.[CrossRef]
    [Google Scholar]
  32. Mayordomo, I. & Sanz, P. ( 2002; ). The Saccharomyces cerevisiae 14-3-3 protein Bmh2 is required for regulation of the phosphorylation status of Fin1, a novel intermediate filament protein. Biochem J 365, 51–56.[CrossRef]
    [Google Scholar]
  33. Milne, F. C., Moorhead, G., Pozuelo Rubio, M., Wong, B., Kulma, A., Harthill, J. E., Villadsen, D., Cotelle, V. & MacKintosh, C. ( 2002; ). Affinity purification of diverse plant and human 14-3-3-binding partners. Biochem Soc Trans 30, 379–381.
    [Google Scholar]
  34. Nobile, C. J., Bruno, V. M., Richard, M. L., Davis, D. A. & Mitchell, A. P. ( 2003; ). Genetic control of chlamydospore formation in Candida albicans. Microbiology 149, 3629–3637.[CrossRef]
    [Google Scholar]
  35. Pozuelo Rubio, M., Geraghty, K. M., Wong, B. H., Wood, N. T., Campbell, D. G., Morrice, N. & MacKintosh, C. ( 2004; ). 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation, and trafficking. Biochem J 379, 395–408.[CrossRef]
    [Google Scholar]
  36. Ramon, A. M. & Fonzi, W. A. ( 2003; ). Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2, 718–728.[CrossRef]
    [Google Scholar]
  37. Roberts, R. L., Mosch, H. U. & Fink, G. R. ( 1997; ). 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89, 1055–1065.[CrossRef]
    [Google Scholar]
  38. Roth, D., Birkenfeld, J. & Betz, H. ( 1999; ). Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett 460, 411–416.[CrossRef]
    [Google Scholar]
  39. Rupp, S., Summers, E., Lo, H. J., Madhani, H. & Fink, G. ( 1999; ). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257–1269.[CrossRef]
    [Google Scholar]
  40. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Shen, Y. H., Godlewski, J., Bronisz, A., Zhu, J., Comb, M. J., Avruch, J. & Tzivion, G. ( 2003; ). Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding. Mol Biol Cell 14, 4721–4733.[CrossRef]
    [Google Scholar]
  42. Sonneborn, A., Bockmuhl, D. P. & Ernst, J. F. ( 1999; ). Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67, 5514–5517.
    [Google Scholar]
  43. Sturtevant, J., Cihlar, R. L. & Calderone, R. A. ( 1998; ). Disruption studies of a Candida albicans gene, ELF1, a member of the ATP binding cassette family. Microbiology 144, 2311–2321.[CrossRef]
    [Google Scholar]
  44. Tzivion, G. & Avruch, J. ( 2002; ). 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277, 3061–3064.[CrossRef]
    [Google Scholar]
  45. Tzivion, G., Shen, Y. H. & Zhu, J. ( 2001; ). 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 20, 6331–6338.[CrossRef]
    [Google Scholar]
  46. van Hemert, M. J., van Heusden, G. P. & Steensma, H. Y. ( 2001; ). Yeast 14-3-3 proteins. Yeast 18, 889–895.[CrossRef]
    [Google Scholar]
  47. van Heusden, G. P. & Steensma, H. Y. ( 2001; ). 14-3-3 Proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae. Yeast 18, 1479–1491.[CrossRef]
    [Google Scholar]
  48. van Heusden, G. P., Wenzel, T. J., Lagendijk, E. L., de Steensma, H. Y. & van den Berg, J. A. ( 1992; ). Characterization of the yeast BMH1 gene encoding a putative protein homologous to mammalian protein kinase II activators and protein kinase C inhibitors. FEBS Lett 302, 145–150.[CrossRef]
    [Google Scholar]
  49. van Heusden, G. P., Griffiths, D. J., Ford, J. C., Chin, A. W. T. F., Schrader, P. A., Carr, A. M. & Steensma, H. Y. ( 1995; ). The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem 229, 45–53.[CrossRef]
    [Google Scholar]
  50. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
    [Google Scholar]
  51. Yaffe, M. B. ( 2002; ). How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53–57.[CrossRef]
    [Google Scholar]
  52. Yaffe, M. B. & Elia, A. E. ( 2001; ). Phosphoserine/threonine-binding domains. Curr Opin Cell Biol 13, 131–138.[CrossRef]
    [Google Scholar]
  53. Zhang, L., Wang, H., Liu, D., Liddington, R. & Fu, H. ( 1997; ). Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. J Biol Chem 272, 13717–13724.[CrossRef]
    [Google Scholar]
  54. Zhou, Y., Reddy, S., Murrey, H., Fei, H. & Levitan, I. B. ( 2003; ). Monomeric 14-3-3 protein is sufficient to modulate the activity of the Drosophila slowpoke calcium-dependent potassium channel. J Biol Chem 278, 10073–10080.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26910-0
Loading
/content/journal/micro/10.1099/mic.0.26910-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error