1887

Abstract

The trimethylamine -oxide (TMAO) reductase TorA, a DMSO reductase family member, is a periplasmic molybdoenzyme of . The cytoplasmic protein TorD acts as a chaperone for TorA, allowing the efficient insertion of the molybdenum cofactor into the apoform of the enzyme prior to its secretion. This paper demonstrates that TorD is a member of a large family of prokaryotic proteins that are structurally related. Moreover, their genes generally belong to operons also encoding molybdoenzymes of the DMSO reductase family. Both the TorD and the DMSO reductase families present a similar phylogenetic organization, suggesting a co-evolution of these two families of proteins. This hypothesis is also supported by the fact that the TorD and DmsD chaperones cannot replace each other and thus appear dedicated to specific molybdopartners. Interestingly, it was found that the positive effect of TorD on TorA maturation, and the partial inhibitory effect of DmsD and homologues, are independent of the TorA signal sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26909-0
2004-04-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500935.html?itemId=/content/journal/micro/10.1099/mic.0.26909-0&mimeType=html&fmt=ahah

References

  1. Adler A. J., Greenfield N. J., Fasman G. D.. 1973; Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol27:675–735
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  3. Berks B. C., Sargent F., Palmer T.. 2000; The Tat protein export pathway. Mol Microbiol35:260–274[CrossRef]
    [Google Scholar]
  4. Chung C. T., Miller R. H.. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res16: 3580[CrossRef]
    [Google Scholar]
  5. Czjzek M., Dos Santos J. P., Pommier J., Giordano G., Haser R., Méjean V.. 1998; Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2·5 Å resolution. J Mol Biol284:435–447[CrossRef]
    [Google Scholar]
  6. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645[CrossRef]
    [Google Scholar]
  7. Dos Santos J. P., Iobbi-Nivol C., Couillault C., Giordano G., Méjean V.. 1998; Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol284:421–433[CrossRef]
    [Google Scholar]
  8. Fürste J. P., Pansegrau W., Frank R., Blocker H., Scholz P., Bagdasarian M., Lanka E.. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene48:119–131[CrossRef]
    [Google Scholar]
  9. Gon S., Patte J. C., Iobbi-Nivol C., Méjean V.. 2000; The torYZ (yecKbisZ) operon encodes a third respiratory trimethylamineN-oxide (TMAO) reductase in Escherichia coli. J Bacteriol182:5779–5786[CrossRef]
    [Google Scholar]
  10. Gon S., Giudici-Orticoni M. T., Iobbi-Nivol C., Méjean V.. 2001; Electron transfer and binding of the c-type cytochrome TorC to the trimethylamineN-oxide reductase in Escherichia coli. J Biol Chem276:11545–11551[CrossRef]
    [Google Scholar]
  11. Hille R.. 1996; The mononuclear molybdenum enzymes. Chemical Reviews96:2757–2816[CrossRef]
    [Google Scholar]
  12. Ilbert M., Giudici-Orticoni M. T., Samama J. P., Iobbi-Nivol C., Méjean V.. 2003; Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem278:28787–28792[CrossRef]
    [Google Scholar]
  13. Iobbi-Nivol C., Pommier J., Simala-Grant J., Giordano G., Méjean V.. 1996; High substrate specificity and induction characteristics of trimethylamine-N-oxide reductase ofEscherichia coli. Biochim Biophys Acta1294:77–82[CrossRef]
    [Google Scholar]
  14. Jourlin C., Ansaldi M., Méjean V.. 1997; Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. J Mol Biol267:770–777[CrossRef]
    [Google Scholar]
  15. McAlpine A. S., McEwan A. G., Shaw A. L., Bailey S.. 1997; Molybdenum active centre of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidized enzyme at 1·82 Å resolution. J Biol Inorg Chem2:690–701[CrossRef]
    [Google Scholar]
  16. McDevitt C. A., Hugenholtz P., Hanson G. R., McEwan A. G.. 2002; Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol44:1575–1587[CrossRef]
    [Google Scholar]
  17. Méjean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C.. 1994; TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol11:1169–1179[CrossRef]
    [Google Scholar]
  18. Mouncey N. J., Choudhary M., Kaplan S.. 1997; Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J Bacteriol179:7617–7624
    [Google Scholar]
  19. Oresnik I. J., Ladner C. L., Turner R. J.. 2001; Identification of a twin-arginine leader-binding protein. Mol Microbiol40:323–331[CrossRef]
    [Google Scholar]
  20. Papish A. L., Ladner C. L., Turner R. J.. 2003; The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem278:32501–32506[CrossRef]
    [Google Scholar]
  21. Pommier J., Giordano G., Iobbi-Nivol C., Méjean V.. 1998; TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem273:16615–16620[CrossRef]
    [Google Scholar]
  22. Rajagopalan K. V., Johnson J. L.. 1992; The pterin molybdenum cofactors. J Biol Chem267:10199–10202
    [Google Scholar]
  23. Ray N., Oates J., Turner R. J., Robinson C.. 2003; DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Lett534:156–160[CrossRef]
    [Google Scholar]
  24. Richardson D. J.. 2000; Bacterial respiration: a flexible process for a changing environment. Microbiology146:551–571
    [Google Scholar]
  25. Santini C. L., Ize B., Chanal A., Muller M., Giordano G., Wu L. F.. 1998; A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J17:101–112[CrossRef]
    [Google Scholar]
  26. Sargent F., Berks B. C., Palmer T.. 2002; Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol178:77–84[CrossRef]
    [Google Scholar]
  27. Schindelin H., Kisker C., Hilton J., Rajagopalan K. V., Rees D. C.. 1996; Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science272:1615–1621[CrossRef]
    [Google Scholar]
  28. Schneider F., Lowe J., Huber R., Schindelin H., Kisker C., Knablein J.. 1996; Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1·88 Å resolution. J Mol Biol263:53–69[CrossRef]
    [Google Scholar]
  29. Shaw A. L., Leimkuhler S., Klipp W., Hanson G. R., McEwan A. G.. 1999; Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus. Microbiology145:1409–1420[CrossRef]
    [Google Scholar]
  30. Simala-Grant J. L., Weiner J. H.. 1996; Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology142:3231–3239[CrossRef]
    [Google Scholar]
  31. Tranier S., Ilbert M., Birck C., Iobbi-Nivol C., Samama J. P., Mortier-Barrière I., Méjean V.. 2002; Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA. Protein Sci11:2148–2157
    [Google Scholar]
  32. Tranier S., Iobbi-Nivol C., Birck C., Ilbert M., Samama J. P., Mortier-Barrière I., Méjean V.. 2003; A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure11:165–174[CrossRef]
    [Google Scholar]
  33. Weiner J. H., Rothery R. A., Sambasivarao D., Trieber C. A.. 1992; Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. Biochim Biophys Acta1102:1–18[CrossRef]
    [Google Scholar]
  34. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J.. 1998; A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell93:93–101[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26909-0
Loading
/content/journal/micro/10.1099/mic.0.26909-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error