1887

Abstract

Pathogenesis of is controlled to a major extent by the two quorum-sensing systems and . The previously uncharacterized gene was identified as a major virulence regulator, , in the quorum-sensing hierarchy. is a member of the LuxR family and possesses a box in its upstream region. Transposon inactivation of abrogated the production of -acylhomoserine lactones and the secretion of exoproducts and diminished bacterial virulence for . Cytotoxicity towards macrophages was not affected. mRNA was expressed more strongly in the presence of human serum and oxidative stress than under standard growth conditions. High-density oligonucleotide microarrays were used to compare the global expression profile of a wild-type strain and a mutant. One-hundred-and-fifty-one and 113 genes were significantly differentially expressed in the presence of HO and human serum, respectively. The disruption of repressed the expression of genes that are known to be promoted by quorum sensing and activated the expression of genes that are known to be repressed by quorum sensing. Moreover, the mutant harboured less mRNA transcript for the production of siderophores and membrane-bound elements of antibiotic resistance. The protein encoded by regulates several traits of pathogenicity; hence, the name (‘virulence and quorum-sensing regulator’) was assigned to .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26906-0
2004-04-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500831.html?itemId=/content/journal/micro/10.1099/mic.0.26906-0&mimeType=html&fmt=ahah

References

  1. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E. H., Iglewski B. H.. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3928–3935
    [Google Scholar]
  2. Allefs J. J., Salentijn E. M., Krens F. A., Rouwendal G. J.. 1990; Optimization of non-radioactive Southern blot hybridization: single copy detection and reuse of blots. Nucleic Acids Res18:3099–3100[CrossRef]
    [Google Scholar]
  3. Andersen J. B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B. B., Molin S., Givskov M.. 2001; gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol67:575–585[CrossRef]
    [Google Scholar]
  4. Brukner I., Sanchez R., Suck D., Pongor S.. 1995; Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J14:1812–1818
    [Google Scholar]
  5. Camara M., Williams P., Hardman A.. 2002; Controling infection by tuning in and turning down the volume of bacterial small talk. Lancet Infect Dis2:667–676[CrossRef]
    [Google Scholar]
  6. Chen Y. W., Zhao P., Borup R., Hoffman E. P.. 2000; Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol151:1321–1336[CrossRef]
    [Google Scholar]
  7. Chugani S. A., Whiteley M., Lee K. M., D'Argenio D., Manoil C., Greenberg E. P.. 2001; QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A98:2752–2757[CrossRef]
    [Google Scholar]
  8. Cowell A. B., Twining S. S., Hobden J. A., Kwong M. S. F., Fleiszig S. M. J.. 2003; Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology149:2291–2299[CrossRef]
    [Google Scholar]
  9. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P.. 1998; The involvement of cell-to-cell signals in the development of bacterial biofilm. Science280:295–298[CrossRef]
    [Google Scholar]
  10. de Kievit T. R., Iglewski B. H.. 2000; Bacterial quorum sensing in pathogenic relationships. Infect Immun68:4839–4849[CrossRef]
    [Google Scholar]
  11. de Kievit T. R., Seed P. C., Nezezon J., Passador L., Iglewski B. H.. 1999; RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J Bacteriol181:2175–2184
    [Google Scholar]
  12. Diggle S. P., Winzer K., Lazdunski A., Williams P., Camara M.. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol184:2576–2586[CrossRef]
    [Google Scholar]
  13. Diggle S. P., Winzer K., Chhabra S. R., Worall K. E., Camara M., Williams P.. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependence of quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol50:29–43[CrossRef]
    [Google Scholar]
  14. Frank D. W.. 1997; The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol26:621–629[CrossRef]
    [Google Scholar]
  15. Fuqua W. C., Winans S. C., Greenberg E. P.. 1996; Census and consensus in bacterial ecosystems: the LuxR-LuxI family of cell quorum-sensing regulators. Annu Rev Microbiol50:727–751[CrossRef]
    [Google Scholar]
  16. Geisenberger O., Givskov M., Riedel K., Høiby N., Tümmler B., Eberl L.. 2000; Production of N-acyl-l-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiol Lett184:273–278
    [Google Scholar]
  17. Hancock R. E., Speert D. P.. 2000; Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat3:247–255[CrossRef]
    [Google Scholar]
  18. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D.. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact13:232–237[CrossRef]
    [Google Scholar]
  19. Hentzer M., Eberl L., Nielsen J., Givskov M.. 2003a; Quorum sensing: a novel target for the treatment of biofilm infections. BioDrugs17:241–250[CrossRef]
    [Google Scholar]
  20. Hentzer M., Wu H., Andersen J. B..15 other authors 2003b; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J22:3803–3815[CrossRef]
    [Google Scholar]
  21. Jude F., Kohler T., Branny P., Perron K., Mayer M. P., Comte R., van Delden C.. 2003; Posttranscriptional control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa. J Bacteriol185:3558–3566[CrossRef]
    [Google Scholar]
  22. Kiewitz C., Weinel C., Tümmler B.. 2002; Genome codon index of Pseudomonas aeruginosa: a codon index that utilizes whole genome sequence data. Genome Lett1:61–70[CrossRef]
    [Google Scholar]
  23. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307
    [Google Scholar]
  24. Lambert P. A..2002: . Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med95 Suppl 41:22–26
    [Google Scholar]
  25. Lamont I. L., Martin L. W.. 2003; Identification and characterization of novel pyoverdine synthesis gene in Pseudomonas aeruginosa. Microbiology149:833–842[CrossRef]
    [Google Scholar]
  26. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A.. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21:1137–1146[CrossRef]
    [Google Scholar]
  27. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M.. 1999; Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell96:47–56[CrossRef]
    [Google Scholar]
  28. McClean K. H., Winson M. K., Fish L..9 other authors 1997; Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology143:3703–3711[CrossRef]
    [Google Scholar]
  29. McKnight K. H., Iglewski B. H., Pesci E. C.. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol182:2702–2708[CrossRef]
    [Google Scholar]
  30. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H.. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science260:1127–1130[CrossRef]
    [Google Scholar]
  31. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P.. 1994; The structure of the autoinducer molecule required for the expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A91:197–201[CrossRef]
    [Google Scholar]
  32. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3127–3232
    [Google Scholar]
  33. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:11229–11234[CrossRef]
    [Google Scholar]
  34. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T. G., Camara M., Haas D., Williams P.. 2001; The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol183:6676–6683[CrossRef]
    [Google Scholar]
  35. Poole K.. 2001; Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol3:255–264
    [Google Scholar]
  36. Ravel J., Cornelis P.. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200[CrossRef]
    [Google Scholar]
  37. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski M., Haas D.. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol24:309–319[CrossRef]
    [Google Scholar]
  38. Rumbaugh K. P., Griswold J. A., Hamood A. N.. 1999; Contribution of the regulatory gene lasR to pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil20:42–49[CrossRef]
    [Google Scholar]
  39. Rust L., Messing C. R., Iglewski B. H.. 1994; Elastase assays. Methods Enzymol235:554–562
    [Google Scholar]
  40. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. 2003; Identification, timing and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079[CrossRef]
    [Google Scholar]
  41. Shaw P. D., Ping G., Daly S. L., Cha C., Farrand S. K., Cronan J. E., Jr, Rinehart K. L.. 1997; Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A94:6036–6041[CrossRef]
    [Google Scholar]
  42. Steidle A., Sigl K., Schuhegger R..9 other authors 2001; Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol67:5761–5770[CrossRef]
    [Google Scholar]
  43. Stiernagle T.. 1999; In C. elegans: a Practical Approach pp.51–67 Edited by Hope I. A..Series editor Hames B. D.. New York: Oxford University Press;
    [Google Scholar]
  44. Stover C. K., Pham X. Q., Erwin A. L..28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964[CrossRef]
    [Google Scholar]
  45. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M.. 1999; Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A96:2408–2413[CrossRef]
    [Google Scholar]
  46. Tang H. B., DiMango E., Bryan R., Gambello M., Iglewski B. H., Goldberg J. B., Prince A.. 1996; Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun64:37–43
    [Google Scholar]
  47. Tao H., Bausch C., Richmond C., Blattner F. R., Convay T.. 1999; Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol181:6425–6440
    [Google Scholar]
  48. Tümmler B., Kiewitz C.. 1999; Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today5:351–358[CrossRef]
    [Google Scholar]
  49. Tümmler B., Koopmann U., Grothues D., Weissbrodt H., Steinkamp D., von der Hardt H.. 1991; Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol29:1265–1267
    [Google Scholar]
  50. Van Delden C., Iglewski B. H.. 1998; Cell-to-cell signaling in Pseudomonas aeruginosa infections. Emerg Infect Dis4:551–560[CrossRef]
    [Google Scholar]
  51. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095[CrossRef]
    [Google Scholar]
  52. Wiehlmann L., Salunkhe P., Larbig K., Ritzka M., Tümmler B.. 2002; Signature tagged mutagenesis of Pseudomonas aeruginosa. Genome Lett3:131–139
    [Google Scholar]
  53. Williams P., Camara M., Hardman A..7 other authors 2000; Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc Lond B Biol Sci355:667–680[CrossRef]
    [Google Scholar]
  54. Winson M. K., Camara M., Lafiti A..10 other authors 1995; Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites inPseudomonas aeruginosa. Proc Natl Acad Sci U S A92:9427–9431[CrossRef]
    [Google Scholar]
  55. Winson M. K., Swift S., Fish L., Throup J. P., Jørgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B.. 1998; Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett163:185–192[CrossRef]
    [Google Scholar]
  56. Winzer K., Falconer C., Garber N. C., Diggle S. P., Camara M., Williams P.. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol182:6401–6411[CrossRef]
    [Google Scholar]
  57. Wu Y. P., McMahon E., Kraine M. R., Tisch R., Meyers A., Frelinger J., Matsushima G. K., Suzuki K.. 2000; Distribution and characterization of GFP(+) donor hematogenous cells in Twitcher mice after bone marrow transplantation. Am J Pathol156:1849–1854[CrossRef]
    [Google Scholar]
  58. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  59. Yoon S. S., Hennigan R. F., Hilliard G. M..17 other authors 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell3:593–603[CrossRef]
    [Google Scholar]
  60. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26906-0
Loading
/content/journal/micro/10.1099/mic.0.26906-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error