1887

Abstract

The role of the alternative factor, encoded by the gene, was investigated in by comparing the global gene expression of the wild-type EGDe strain and an mutant. Gene expression, using whole-genome macroarrays, and protein content, using two-dimensional gel electrophoresis, were analysed. Seventy-seven genes and nine proteins, whose expression was modulated in the mutant as compared to the wild-type strain, were identified. Most of the modifications were related to carbohydrate metabolism and in particular to pyruvate metabolism. However, under the conditions studied, only the operon was shown to be directly controlled by . Therefore, the remaining modifications seem to be due to indirect effects. In parallel, an analysis suggests that may directly control the expression of four different phosphotransferase system (PTS) operons, including . PTS activity is known to have a direct effect on the pyruvate pool and on catabolite regulation. These results suggest that is mainly involved in the control of carbohydrate metabolism in via direct regulation of PTS activity, alteration of the pyruvate pool and modulation of carbon catabolite regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26860-0
2004-05-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501581.html?itemId=/content/journal/micro/10.1099/mic.0.26860-0&mimeType=html&fmt=ahah

References

  1. Ali, N. O., Bignon, J., Rapoport, G. & Débarbouillé, M. ( 2001; ). Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J Bacteriol 183, 2497–2504.[CrossRef]
    [Google Scholar]
  2. Barrios, H., Valderrama, B. & Morett, E. ( 1999; ). Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 27, 4305–4313.[CrossRef]
    [Google Scholar]
  3. Beckering, C. L., Steil, L., Weber, M. H., Volker, U. & Marahiel, M. A. ( 2002; ). Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184, 6395–6402.[CrossRef]
    [Google Scholar]
  4. Behari, J. & Youngman, P. ( 1998; ). A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180, 6316–6324.
    [Google Scholar]
  5. Bourassa, S. & Vadeboncoeur, C. ( 1992; ). Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate : mannose phosphotransferase system. J Gen Microbiol 138, 769–777.[CrossRef]
    [Google Scholar]
  6. Bruckner, R. & Titgemeyer, F. ( 2002; ). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209, 141–148.[CrossRef]
    [Google Scholar]
  7. Calogero, S., Gardan, R., Glaser, P., Schweizer, J., Rapoport, G. & Débarbouillé, M. ( 1994; ). RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol 176, 1234–1241.
    [Google Scholar]
  8. Chaillou, S., Postma, P. W. & Pouwels, P. H. ( 2001; ). Contribution of the phosphoenolpyruvate : mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. Microbiology 147, 671–679.
    [Google Scholar]
  9. Dalet, K., Cenatiempo, Y., Cossart, P. & Héchard, Y. ( 2001; ). A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147, 3263–3269.
    [Google Scholar]
  10. Dalet, K., Arous, S., Cenatiempo, Y. & Héchard, Y. ( 2003; ). Characterization of a unique σ 54-dependent PTS operon of the lactose family in Listeria monocytogenes. Biochimie 85, 633–638.[CrossRef]
    [Google Scholar]
  11. Darbon, E., Servant, P., Poncet, S. & Deutscher, J. ( 2002; ). Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P∼GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol 43, 1039–1052.[CrossRef]
    [Google Scholar]
  12. Débarbouillé, M., Martin-Verstraete, I., Klier, A. & Rapoport, G. ( 1991; ). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A 88, 2212–2216.[CrossRef]
    [Google Scholar]
  13. Débarbouillé, M., Gardan, R., Arnaud, M. & Rapoport, G. ( 1999; ). Role of BkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181, 2059–2066.
    [Google Scholar]
  14. Deutscher, J., Galinier, A. & Martin-Verstraete, I. ( 2002; ). Carbohydrate uptake and metabolism. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  15. Duché, O., Tremoulet, F., Glaser, P. & Labadie, J. ( 2002; ). Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 68, 1491–1498.[CrossRef]
    [Google Scholar]
  16. Gardan, R., Rapoport, G. & Débarbouillé, M. ( 1995; ). Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J Mol Biol 249, 843–856.[CrossRef]
    [Google Scholar]
  17. Glaser, P., Frangeul, L., Buchrieser, C. & 52 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  18. Gravesen, A., Warthoe, P., Knochel, S. & Thirstrup, K. ( 2000; ). Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiology 146, 1381–1389.
    [Google Scholar]
  19. Gravesen, A., Ramnath, M., Rechinger, K. B., Andersen, N., Jansch, L., Héchard, Y., Hastings, J. W. & Knochel, S. ( 2002; ). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148, 2361–2369.
    [Google Scholar]
  20. Hogema, B. M., Arents, J. C., Bader, R., Eijkemans, K., Yoshida, H., Takahashi, H., Aiba, H. & Postma, P. W. ( 1998; ). Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30, 487–498.[CrossRef]
    [Google Scholar]
  21. Huang, M., Oppermann-Sanio, F. B. & Steinbuchel, A. ( 1999; ). Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181, 3837–3841.
    [Google Scholar]
  22. Hueck, C. J. & Hillen, W. ( 1995; ). Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol 15, 395–401.[CrossRef]
    [Google Scholar]
  23. Klarsfeld, A. D., Goossens, P. L. & Cossart, P. ( 1994; ). Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol Microbiol 13, 585–597.[CrossRef]
    [Google Scholar]
  24. Kreuzer, P., Gartner, D., Allmansberger, R. & Hillen, W. ( 1989; ). Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 171, 3840–3845.
    [Google Scholar]
  25. Martin, I., Débarbouillé, M., Klier, A. & Rapoport, G. ( 1989; ). Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J Bacteriol 171, 1885–1892.
    [Google Scholar]
  26. McHale, M. W., Kroening, K. D. & Bernlohr, D. A. ( 1996; ). Identification of a class of Saccharomyces cerevisiae mutants defective in fatty acid repression of gene transcription and analysis of the frm2 gene. Yeast 12, 319–331.[CrossRef]
    [Google Scholar]
  27. Milohanic, E., Glaser, P., Coppee, J. Y., Frangeul, L., Vega, Y., Vazquez-Boland, J. A., Kunst, F., Cossart, P. & Buchrieser, C. ( 2003; ). Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47, 1613–1625.[CrossRef]
    [Google Scholar]
  28. Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W. & Saier, M. H. ( 2001; ). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39, 1366–1381.[CrossRef]
    [Google Scholar]
  29. Morett, E. & Buck, M. ( 1989; ). In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol 210, 65–77.[CrossRef]
    [Google Scholar]
  30. O'Farrell, ( 1975; ). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021.
    [Google Scholar]
  31. Plumbridge, J. ( 2001; ). Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J Mol Microbiol Biotechnol 3, 371–380.
    [Google Scholar]
  32. Quail, M. A., Haydon, D. J. & Guest, J. R. ( 1994; ). The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12, 95–104.[CrossRef]
    [Google Scholar]
  33. Rabilloud, T. ( 1992; ). A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis 13, 429–439.[CrossRef]
    [Google Scholar]
  34. Robichon, D., Gouin, E., Débarbouillé, M., Cossart, P., Cenatiempo, Y. & Héchard, Y. ( 1997; ). The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179, 7591–7594.
    [Google Scholar]
  35. Schaferkordt, S. & Chakraborty, T. ( 1997; ). Identification, cloning, and characterization of the ima operon, whose gene products are unique to Listeria monocytogenes. J Bacteriol 179, 2707–2716.
    [Google Scholar]
  36. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  37. Shingler, V. ( 1996; ). Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol Microbiol 19, 409–416.[CrossRef]
    [Google Scholar]
  38. Spatafora, G. A., Sheets, M., June, R., Luyimbazi, D., Howard, K., Hulbert, R., Barnard, D., El Janne, M. & Hudson, M. C. ( 1999; ). Regulated expression of the Streptococcus mutans dlt genes correlates with intracellular polysaccharide accumulation. J Bacteriol 181, 2363–2372.
    [Google Scholar]
  39. Studholme, D. J. & Buck, M. ( 2000; ). The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett 186, 1–9.[CrossRef]
    [Google Scholar]
  40. Stulke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J. & Rapoport, G. ( 1995; ). The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177, 6928–6936.
    [Google Scholar]
  41. Titgemeyer, F. & Hillen, W. ( 2002; ). Global control of sugar metabolism: a gram-positive solution. Antonie van Leeuwenhoek 82, 59–71.[CrossRef]
    [Google Scholar]
  42. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26860-0
Loading
/content/journal/micro/10.1099/mic.0.26860-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error