Role of homoserine and threonine pathway intermediates as precursors for the biosynthesis of aminoethoxyvinylglycine in sp. NRRL 5331 Free

Abstract

The genes , and , encoding homoserine dehydrogenase, homoserine kinase (HK) and threonine synthase, respectively, involved in the last steps of threonine biosynthesis, have been studied in sp. NRRL 5331, the producer of the ethylene synthetase inhibitor aminoethoxyvinylglycine (AVG), in order to determine their role in the biosynthesis of AVG. Different null mutants were obtained by plasmid-mediated disruption of each of the three genes. gene disruption had no effect on AVG production, while the disruption of blocked HK activity and substantially reduced the yield of this metabolite, probably due to the accumulation of homoserine and/or methionine which have a negative effect on AVG biosynthesis. Disruption of () completely blocked AVG biosynthesis, indicating that homoserine lies at the branching point of the aspartic-acid-derived biosynthetic route that leads to AVG. The four carbon atoms of the vinylglycine moiety of AVG derive, therefore, from homoserine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26851-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501467.html?itemId=/content/journal/micro/10.1099/mic.0.26851-0&mimeType=html&fmt=ahah

References

  1. Aparicio J. F., Fouces R., Mendes M. V., Olivera N., Martín J. F. 2000; A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol 7:895–905 [CrossRef]
    [Google Scholar]
  2. Barry C. S., Blume B., Bouzayen M., Cooper W., Hamilton A. J., Grierson D. 1996; Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535 [CrossRef]
    [Google Scholar]
  3. Beck E., Lugwig G., Auerswald E. A., Reiss B., Schaller H. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Burr B., Walker P., Truffa-Bachi P., Cohen G. N. 1976; Homoserine kinase from Escherichia coli K12. Eur J Biochem 62:519–526 [CrossRef]
    [Google Scholar]
  6. Cuadrado Y., Fernández M., Recio E., Aparicio J. F., Martín J. F. 2004; Characterization of the ask-asd operon in aminoethoxyvinylglycine-producing Streptomyces sp. NRRL 5331. Appl Microbiol Biotechnol in press
    [Google Scholar]
  7. Feng L., Kirsch J. F. 2000; l-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39:2436–2444 [CrossRef]
    [Google Scholar]
  8. Fernández M., Cuadrado Y., Recio E., Aparicio J. F., Martín J. F. 2002; Characterisation of the hom-thrC-thrB cluster in aminoethoxyvinylglycine-producing Streptomyces sp. NRRL 5331. Microbiology 148:1413–1420
    [Google Scholar]
  9. Gehring H., Rando R. R., Christen P. 1977; Active-site labeling of aspartate aminotransferases by the beta,gamma-unsaturated amino acid vinylglycine. Biochemistry 16:4832–4836 [CrossRef]
    [Google Scholar]
  10. Goodwin T. W., Mercer E. I. 1983 Introduction to Plant Biochemistry New York: Pergamon;
  11. Have A. T., Woltering E. J. 1997; Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89–97 [CrossRef]
    [Google Scholar]
  12. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
  13. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505 [CrossRef]
    [Google Scholar]
  14. MacNeil D. J., Occi J. L., Gewain K. M., MacNeil T., Gibbons P. H., Ruby C. L., Danis S. J. 1992; Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115:119–125 [CrossRef]
    [Google Scholar]
  15. Mendelovitz S., Aharonowitz Y. 1982; Regulation of cephamycin C synthesis, aspartokinase, dihidrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus. Antimicrob Agents Chemother 21:74–84 [CrossRef]
    [Google Scholar]
  16. Minamisawa K. 1990; Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31:81–89
    [Google Scholar]
  17. Mitchell R. E., Coddington J. M. 1991; Biosynthetic pathway to rhizobitoxine in Pseudomonas andropogonis. Phytochemistry 30:1809–1814 [CrossRef]
    [Google Scholar]
  18. Mitchell R. E., Frey E. J. 1988; Rhizobitoxine and hydroxythreonine production by Pseudomonas andropogonis strains, and the implications to plant disease. Physiol Mol Plant Pathol 32:335–341 [CrossRef]
    [Google Scholar]
  19. Owens L. D., Lieberman M., Kunishi A. 1971; Inhibition of ethylene production by rhizobitoxine. Plant Physiol 48:1–4 [CrossRef]
    [Google Scholar]
  20. Ramos C., Delgado M. A., Calderón I. L. 1991; Inhibition by different amino acids of the aspartate kinase and homoserine kinase of the yeast Saccharomyces cerevisiae. FEBS Lett 278:123–126 [CrossRef]
    [Google Scholar]
  21. Rando R. R. 1974; Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid. Biochemistry 13:3859–3863 [CrossRef]
    [Google Scholar]
  22. Ruan X., Zhang C., Peters K. 1993; Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift. Proc Natl Acad Sci U S A 90:2641–2645 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  24. Satoh S., Yang S. F. 1989; Inactivation of 1-aminocyclopropane-1-carboxylate synthase by l-vinylglycine as related to the mechanism-based inactivation of the enzyme by s-adenosyl-l-methionine. Plant Physiol 91:1036–1039 [CrossRef]
    [Google Scholar]
  25. Soper T. S., Manning J. M., Marcotte P. A., Walsh C. T. 1977; Inactivation of bacterial d-amino acid transaminases by the olefinic amino acid d-vinylglycine. J Biol Chem 252:1571–1575
    [Google Scholar]
  26. Yasuta T., Satoh S., Minamisawa K. 1999; New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852
    [Google Scholar]
  27. Yasuta T., Okazaki S., Mitsui H., Yuhashi K., Ezura H., Minamisawa K. 2001; DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. Appl Environ Microbiol 67:4999–5009 [CrossRef]
    [Google Scholar]
  28. Yuhashi K., Ichikawa N., Ezura H., Akao S., Minakawa Y., Nukui N., Yasuta T., Minamisawa K. 2000; Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26851-0
Loading
/content/journal/micro/10.1099/mic.0.26851-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed