1887

Abstract

In batch cultures of , the intracellular concentration of the general stress response sigma factor RpoS typically increases during the transition from the exponential to the stationary growth phase. However, because this transition is accompanied by complex physico-chemical and biological changes, which signals predominantly elicit this induction is still the subject of debate. Careful design of the growth environment in chemostat and batch cultures allowed the separate study of individual factors affecting RpoS. Specific growth rate, and not cell density or the nature of the growth-limiting nutrient, controlled RpoS expression and RpoS-dependent hydroperoxidase activity. Furthermore, it was demonstrated that the standard minimal medium A (MMA) is not suitable for high-cell-density cultivation because it lacks trace elements. Previously reported cell-density effects in chemostat cultures of can be explained by a hidden, secondary nutrient limitation, which points to the importance of medium design and appropriate experimental set-up for studying cell-density effects.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26849-0
2004-06-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501637.html?itemId=/content/journal/micro/10.1099/mic.0.26849-0&mimeType=html&fmt=ahah

References

  1. Bearson S. M., Foster J. W., Benjamin W. H., Jr, Swords W. E.. 1996; Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol178:2572–2579
    [Google Scholar]
  2. Cashel M., Gentry D. R., Hernandez V. J., Vinella D.. 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp1458–1496 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
  3. DeLisa M. P., Wu C. F., Wang L., Valdes J. J., Bentley W. E.. 2001; DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol183:5239–5247[CrossRef]
    [Google Scholar]
  4. Drlica K.. 1992; Control of bacterial DNA supercoiling. Mol Microbiol6:425–433[CrossRef]
    [Google Scholar]
  5. Egli T.. 1997; Multiple-nutrient-limited growth of microorganisms: What are the consequences for bioremediation processes?. In Environmental Biotechnology, Part I pp.189–193 Edited by Verachtert H., Verstraete W.. Oostende, Belgium: International Symposium on Environmental Biotechnology;
  6. Egli T.. 2000; Nutrition of microorganisms. In Encyclopedia of Microbiology, 2nd edn. pp.431–447 San Diego: Academic Press;
  7. Frederick J. R., Elkins J. G., Bollinger N., Hassett D. J., McDermott T. R.. 2001; Factors affecting catalase expression in Pseudomonas aeruginosa biofilms and planktonic cells. Appl Environ Microbiol67:1375–1379[CrossRef]
    [Google Scholar]
  8. Fuqua W. C., Winans S. C., Greenberg E. P.. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  9. Garcia-Lara J., Shang L. H., Rothfield L. I.. 1996; An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli. J Bacteriol178:2742–2748
    [Google Scholar]
  10. Gentry D. R., Hernandez V. J., Nguyen L. H., Jensen D. B., Cashel M.. 1993; Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol175:7982–7989
    [Google Scholar]
  11. Hantke K.. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177[CrossRef]
    [Google Scholar]
  12. Hengge-Aronis R.. 1996; Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.1497–1512 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
  13. Hengge-Aronis R.. 2000; The general stress response in E. coli. In Bacterial Stress Responses pp.161–178 Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
  14. Hengge-Aronis R.. 2002; Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395[CrossRef]
    [Google Scholar]
  15. Huisman G. W., Kolter R.. 1994; Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science265:537–539[CrossRef]
    [Google Scholar]
  16. Ivanova A., Miller C., Glinsky G., Eisenstark A.. 1994; Role of rpoS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol Microbiol12:571–578[CrossRef]
    [Google Scholar]
  17. Jishage M., Iwata A., Ueda S., Ishihama A.. 1996; Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J Bacteriol178:5447–5451
    [Google Scholar]
  18. Jishage M., Kvint K., Shingler V., Nystrom T.. 2002; Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev16:1260–1270[CrossRef]
    [Google Scholar]
  19. Lange R., Hengge-Aronis R.. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol5:49–59[CrossRef]
    [Google Scholar]
  20. Lange R., Hengge-Aronis R.. 1994; The cellular concentration of the σS subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev8:1600–1612[CrossRef]
    [Google Scholar]
  21. Lange R., Fischer D., Hengge-Aronis R.. 1995; Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σS subunit of RNA polymerase in Escherichia coli. J Bacteriol177:4676–4680
    [Google Scholar]
  22. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A.. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21:1137–1146[CrossRef]
    [Google Scholar]
  23. Light P. A.. 1972; Influence of environment on mitochondrial function in yeast. J Appl Chem Biotechnol22:509–526[CrossRef]
    [Google Scholar]
  24. Liu X., Ferenci T.. 1998; Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J Bacteriol180:3917–3922
    [Google Scholar]
  25. Liu X., Ferenci T.. 2001; An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology147:2981–2989
    [Google Scholar]
  26. Liu X., Ng C., Ferenci T.. 2000; Global adaptations resulting from high population densities in Escherichia coli cultures. J Bacteriol182:4158–4164[CrossRef]
    [Google Scholar]
  27. Loewen P. C., von Ossowski I., Switala J., Mulvey M. R.. 1993; KatF (σS) synthesis in Escherichia coli is subject to posttranscriptional regulation. J Bacteriol175:2150–2153
    [Google Scholar]
  28. McCann M. P., Fraley C. D., Matin A.. 1993; The putative σ factor KatF is regulated posttranscriptionally during carbon starvation. J Bacteriol175:2143–2149
    [Google Scholar]
  29. Miller J.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  30. Muffler A., Traulsen D. D., Lange R., Hengge-Aronis R.. 1996; Post-transcriptional regulation of the sigma S subunit of RNA polymerase in Escherichia coli. J Bacteriol178:1607–1613
    [Google Scholar]
  31. Muffler A., Barth M., Marschall C., Hengge-Aronis R.. 1997; Heat shock regulation of σS turnover: a role for DnaK and relationship between stress responses mediated by σS and σ32 in Escherichia coli. J Bacteriol179:445–452
    [Google Scholar]
  32. Mulvey M. R., Loewen P. C.. 1989; Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel sigma transcription factor. Nucleic Acids Res17:9979–9991[CrossRef]
    [Google Scholar]
  33. Nealson K. H.. 1977; Autoinduction of bacterial luciferase. Arch Microbiol112:73–79[CrossRef]
    [Google Scholar]
  34. Neijssel O. M., De Mattos M. J. T., Tempest D. W.. 1996; Growth yield and energy distribution. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.1683–1692 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
  35. Notley L., Ferenci T.. 1996; Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli?. J Bacteriol178:1465–1468
    [Google Scholar]
  36. Notley-McRobb L., Death A., Ferenci T.. 1997; The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology143:1909–1918[CrossRef]
    [Google Scholar]
  37. Notley-McRobb L., King T., Ferenci T.. 2002; rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol184:806–811[CrossRef]
    [Google Scholar]
  38. Nyström T.. 1998; To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol Rev21:283–290[CrossRef]
    [Google Scholar]
  39. O'Neal C. R., Gabriel W. M., Turk A. K., Libby S. J., Fang F. C., Spector M. P.. 1994; RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol176:4610–4616
    [Google Scholar]
  40. Peters J. E., Thate T. E., Craig N. L.. 2003; Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol185:2017–2021[CrossRef]
    [Google Scholar]
  41. Pirt S. J.. 1975; Principles of Microbe and Cell Cultivation Oxford: Blackwell Scientific Publications;
  42. Schellhorn H. E., Stones V. L.. 1992; Regulation of katF and katE in Escherichia coli K-12 by weak acids. J Bacteriol174:4769–4777
    [Google Scholar]
  43. Sitnikov D. M., Schineller J. B., Baldwin T. O.. 1996; Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both RpoS- and SdiA-mediated autoinduction. Proc Natl Acad Sci U S A93:336–341[CrossRef]
    [Google Scholar]
  44. Sledjeski D. D., Gupta A., Gottesman S.. 1996; The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J15:3993–4000
    [Google Scholar]
  45. Smith H. W.. 1965; Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol89:95–122[CrossRef]
    [Google Scholar]
  46. Sperandio V., Torres A. G., Giron J. A., Kaper J. B.. 2001; Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol183:5187–5197[CrossRef]
    [Google Scholar]
  47. Surette M. G., Bassler B. L.. 1998; Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A95:7046–7050[CrossRef]
    [Google Scholar]
  48. Surette M. G., Miller M. B., Bassler B. L.. 1999; Quorum sensing in Escherichia coli and Salmonella typhimurium and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A96:1639–1644[CrossRef]
    [Google Scholar]
  49. Teich A., Meyer S., Lin H. Y., Andersson L., Enfors S., Neubauer P.. 1999; Growth rate related concentration changes of the starvation response regulators σS and ppGpp in glucose-limited fed-batch and continuous cultures of Escherichia coli. Biotechnol Prog15:123–129[CrossRef]
    [Google Scholar]
  50. Townsley P. M., Neilands J. B.. 1956; The iron and porphyrin metabolism of Micrococcus lysodeikticus. J Biol Chem224:695–705
    [Google Scholar]
  51. van Delden C., Comte R., Bally A. M.. 2001; Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J Bacteriol183:5376–5384[CrossRef]
    [Google Scholar]
  52. Visick J. E., Clarke S.. 1997; RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol179:4158–4163
    [Google Scholar]
  53. Wanner U., Egli T.. 1990; Microbial growth dynamics in batch culture. FEMS Microbiol Rev75:19–44[CrossRef]
    [Google Scholar]
  54. Wick L. M., Weilenmann H., Egli T.. 2002; The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology148:2889–2902
    [Google Scholar]
  55. Winzer K., Hardie K. R., Burgess N..8 other authors 2002; LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology148:909–922
    [Google Scholar]
  56. Yoon S. H., Han M. J., Lee S. Y., Jeong K. J., Yoo J. S.. 2003; Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng81:753–767[CrossRef]
    [Google Scholar]
  57. Zheng M., Doan B., Schneider T. D., Storz G.. 1999; OxyR and SoxRS regulation of fur. J Bacteriol181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26849-0
Loading
/content/journal/micro/10.1099/mic.0.26849-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error