1887

Abstract

The origin of altruism is a fundamental problem in evolution, and the maintenance of biodiversity is a fundamental problem in ecology. These two problems combine with the fundamental microbiological question of whether it is always advantageous for a unicellular organism to grow as fast as possible. The common basis for these three themes is a trade-off between growth rate and growth yield, which in turn is based on irreversible thermodynamics. The trade-off creates an evolutionary alternative between two strategies: high growth yield at low growth rate versus high growth rate at low growth yield. High growth yield at low growth rate is a case of an altruistic strategy because it increases the fitness of the group by using resources economically at the cost of decreased fitness, or growth rate, of the individual. The group-beneficial behaviour is advantageous in the long term, whereas the high growth rate strategy is advantageous in the short term. Coexistence of species requires differences between their niches, and niche space is typically divided into four ‘axes' (time, space, resources, predators). This neglects survival strategies based on cooperation, which extend the possibilities of coexistence, arguing for the inclusion of cooperation as the fifth ‘axis’. Here, individual-based model simulations show that spatial structure, as in, for example, biofilms, is necessary for the origin and maintenance of this ‘primitive’ altruistic strategy and that the common belief that growth rate but not yield decides the outcome of competition is based on chemostat models and experiments. This evolutionary perspective on life in biofilms can explain long-known biofilm characteristics, such as the structural organization into microcolonies, the often-observed lack of mixing among microcolonies, and the shedding of single cells, as promoting the origin and maintenance of the altruistic strategy. Whereas biofilms enrich altruists, enrichment cultures, microbiology's paradigm for isolating bacteria into pure culture, select for highest growth rate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26829-0
2004-08-01
2020-11-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502751.html?itemId=/content/journal/micro/10.1099/mic.0.26829-0&mimeType=html&fmt=ahah

References

  1. Bak F., Finster K., Rothfuß F. 1992; Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157:529–534
    [Google Scholar]
  2. Bradshaw D. J., Homer K. A., Marsh P. D., Beighton D. 1994; Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412 [CrossRef]
    [Google Scholar]
  3. Brock T. D. 1998 Milestones in Microbiology: 1546 to 1940 Washington, DC: American Society for Microbiology;
  4. Brown S. P., Johnstone R. A. 2001; Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc Lond B Biol Sci 268:961–965 [CrossRef]
    [Google Scholar]
  5. Caldwell D. E., Wolfaardt G. M., Korber D. R., Lawrence J. R. 1997; Do bacterial communities transcend darwinism?. Adv Microb Ecol 15:105–191
    [Google Scholar]
  6. Chesson P. 2000; Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366 [CrossRef]
    [Google Scholar]
  7. Chiang P., Burrows L. L. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol 185:2374–2378 [CrossRef]
    [Google Scholar]
  8. Christensen B. B., Haagensen J. A. J., Heydorn A., Molin S. 2002; Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502 [CrossRef]
    [Google Scholar]
  9. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [CrossRef]
    [Google Scholar]
  10. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  11. Crespi B. J. 2001; The evolution of social behavior in microorganisms. Trends Ecol Evol 16:178–183 [CrossRef]
    [Google Scholar]
  12. Davey M. E., Caiazza N. C., O'Toole G. A. 2003; Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036 [CrossRef]
    [Google Scholar]
  13. Drenkard E., Ausubel F. M. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743 [CrossRef]
    [Google Scholar]
  14. Edwards J. S., Ibarra R. U., Palsson B. O. 2001; In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130 [CrossRef]
    [Google Scholar]
  15. Gilbert P., Maira-Litran T., McBain A. J., Rickard A. H., Whyte F. W. 2002; The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256
    [Google Scholar]
  16. Hardin G. 1968; The tragedy of the commons. Science 162:1243–1248 [CrossRef]
    [Google Scholar]
  17. Hauert C., De Monte S., Hofbauer J., Sigmund K. 2002; Volunteering as red queen mechanism for cooperation in public goods games. Science 296:1129–1132 [CrossRef]
    [Google Scholar]
  18. Heijnen J. J., van Dijken J. P. 1992; In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858 [CrossRef]
    [Google Scholar]
  19. Hofbauer J., Sigmund K. 1998 Evolutionary Games and Population Dynamics Cambridge: Cambridge University Press;
  20. Joseph S. J., Hugenholtz P., Sangwan P., Osborne C. A., Janssen P. H. 2003; Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215 [CrossRef]
    [Google Scholar]
  21. Kappler O., Janssen P. H., Kreft J.-U., Schink B. 1997; Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology 143:1105–1114 [CrossRef]
    [Google Scholar]
  22. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524 [CrossRef]
    [Google Scholar]
  23. Koch A. L. 1985; The macroeconomics of bacterial growth. In Bacteria in their Natural Environments pp 1–42 Edited by Fletcher M., Floodgate G. D. London: Academic Press;
  24. Kreft J.-U., Schink B. 1993; Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS4. Arch Microbiol 159:308–315 [CrossRef]
    [Google Scholar]
  25. Kreft J.-U., Picioreanu C., Wimpenny J. W. T., van Loosdrecht M. C. M. 2001; Individual-based modelling of biofilms. Microbiology 147:2897–2912
    [Google Scholar]
  26. Lai C. H., Listgarten M. A., Rosan B. 1975; Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase-labeled antibody: localization of Streptococcus sanguis in intact dental plaque. Infect Immun 11:200–210
    [Google Scholar]
  27. Lawrence J. R., Caldwell D. E. 1987; Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 14:15–27 [CrossRef]
    [Google Scholar]
  28. Listgarten M. A. 2000; The structure of dental plaque. Periodontology 5:52–65
    [Google Scholar]
  29. Marr A. G. 1991; Growth rate of Escherichia coli. Microbiol Rev 55:316–333
    [Google Scholar]
  30. Maynard Smith J. 1982 Evolution and the Theory of Games Cambridge: Cambridge University Press;
  31. Møller K., Christensen B., Olsson L, Förster J., Piskur J., Nielsen J. 2002; Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193 [CrossRef]
    [Google Scholar]
  32. Müller R. H., Babel W. 1993; Oxidative capacity determines the growth rate with Acetobacter methanolicus. Acta Biotechnol 13:3–11 [CrossRef]
    [Google Scholar]
  33. Nielsen A. T., Tolker-Nielsen T., Barken K. B., Molin S. 2000; Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68 [CrossRef]
    [Google Scholar]
  34. Nowak M. A., May R. M. 1992; Evolutionary games and spatial chaos. Nature 359:826–829 [CrossRef]
    [Google Scholar]
  35. O'Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 [CrossRef]
    [Google Scholar]
  36. Palmer R. J., Kazmerzak K., Hansen M. C., Kolenbrander P. E. 2001; Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun 69:5794–5804 [CrossRef]
    [Google Scholar]
  37. Pfeiffer T., Bonhoeffer S. 2003; An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci U S A 100:1095–1098 [CrossRef]
    [Google Scholar]
  38. Pfeiffer T., Schuster S., Bonhoeffer S. 2001; Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507 [CrossRef]
    [Google Scholar]
  39. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J. 1998; Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116 [CrossRef]
    [Google Scholar]
  40. Rainey P. B., Rainey K. 2003; Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74 [CrossRef]
    [Google Scholar]
  41. Rice A. R., Hamilton M. A., Camper A. K. 2000; Apparent surface associated lag time in growth of primary biofilm cells. Microb Ecol 40:8–15 [CrossRef]
    [Google Scholar]
  42. Seeliger S., Janssen P. H., Schink B. 2002; Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211:65–70 [CrossRef]
    [Google Scholar]
  43. Sigmund K. 1994 Games of Life Oxford: Oxford University Press;
    [Google Scholar]
  44. Sober E., Wilson S. D. 1998 Unto Others: the Evolution and Psychology of Unselfish Behaviour Cambridge, MA: Harvard University Press;
  45. Stoodley P., Wilson S., Hall-Stoodley L., Boyle J. D., Lappin-Scott H. M., Costerton J. W. 2001; Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67:5608–5613 [CrossRef]
    [Google Scholar]
  46. Strassmann J. E., Zhu Y., Queller D. C. 2000 Altruism and social cheating in the social amoeba Dictyostelium discoideum Nature 408:965–967 [CrossRef]
    [Google Scholar]
  47. Tolker-Nielsen T., Molin S. 2000; Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84
    [Google Scholar]
  48. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S. 2000 Development and dynamics of Pseudomonas sp. biofilms J Bacteriol 182:6482–6489 [CrossRef]
    [Google Scholar]
  49. Turner P. E., Chao L. 1999; Prisoner's dilemma in an RNA virus. Nature 398:441–443 [CrossRef]
    [Google Scholar]
  50. Turner P. E., Chao L. 2003; Escape from Prisoner's Dilemma in RNA phage phi6. Am Nat 161:497–505 [CrossRef]
    [Google Scholar]
  51. Velicer G. J. 2003; Social strife in the microbial world. Trends Microbiol 11:330–337 [CrossRef]
    [Google Scholar]
  52. Velicer G. J., Lenski R. E. 1999; Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80:1168–1179 [CrossRef]
    [Google Scholar]
  53. Velicer G. J., Yu Y. T. 2003; Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425:75–78 [CrossRef]
    [Google Scholar]
  54. Velicer G. J., Schmidt T. M., Lenski R. E. 1999; Application of traditional and phylogenetically based comparative methods to test for a trade-off in bacterial growth rate at low versus high substrate concentration. Microb Ecol 38:191–200 [CrossRef]
    [Google Scholar]
  55. Velicer G. J., Kroos L., Lenski R. E. 2000; Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598–601 [CrossRef]
    [Google Scholar]
  56. Watnick P., Kolter R. 2000; Biofilm, city of microbes. J Bacteriol 182:2675–2679 [CrossRef]
    [Google Scholar]
  57. Westerhoff H. V., van Dam K. 1987 Thermodynamics and Control of Biological Free-Energy Transduction Amsterdam: Elsevier;
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26829-0
Loading
/content/journal/micro/10.1099/mic.0.26829-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error