1887

Abstract

The origin of altruism is a fundamental problem in evolution, and the maintenance of biodiversity is a fundamental problem in ecology. These two problems combine with the fundamental microbiological question of whether it is always advantageous for a unicellular organism to grow as fast as possible. The common basis for these three themes is a trade-off between growth rate and growth yield, which in turn is based on irreversible thermodynamics. The trade-off creates an evolutionary alternative between two strategies: high growth yield at low growth rate versus high growth rate at low growth yield. High growth yield at low growth rate is a case of an altruistic strategy because it increases the fitness of the group by using resources economically at the cost of decreased fitness, or growth rate, of the individual. The group-beneficial behaviour is advantageous in the long term, whereas the high growth rate strategy is advantageous in the short term. Coexistence of species requires differences between their niches, and niche space is typically divided into four ‘axes' (time, space, resources, predators). This neglects survival strategies based on cooperation, which extend the possibilities of coexistence, arguing for the inclusion of cooperation as the fifth ‘axis’. Here, individual-based model simulations show that spatial structure, as in, for example, biofilms, is necessary for the origin and maintenance of this ‘primitive’ altruistic strategy and that the common belief that growth rate but not yield decides the outcome of competition is based on chemostat models and experiments. This evolutionary perspective on life in biofilms can explain long-known biofilm characteristics, such as the structural organization into microcolonies, the often-observed lack of mixing among microcolonies, and the shedding of single cells, as promoting the origin and maintenance of the altruistic strategy. Whereas biofilms enrich altruists, enrichment cultures, microbiology's paradigm for isolating bacteria into pure culture, select for highest growth rate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26829-0
2004-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502751.html?itemId=/content/journal/micro/10.1099/mic.0.26829-0&mimeType=html&fmt=ahah

References

  1. Bak F., Finster K., Rothfuß F.. 1992; Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol157:529–534
    [Google Scholar]
  2. Bradshaw D. J., Homer K. A., Marsh P. D., Beighton D.. 1994; Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology140:3407–3412[CrossRef]
    [Google Scholar]
  3. Brock T. D.. 1998; Milestones in Microbiology: 1546 to 1940 Washington, DC: American Society for Microbiology;
  4. Brown S. P., Johnstone R. A.. 2001; Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc Lond B Biol Sci268:961–965[CrossRef]
    [Google Scholar]
  5. Caldwell D. E., Wolfaardt G. M., Korber D. R., Lawrence J. R.. 1997; Do bacterial communities transcend darwinism?. Adv Microb Ecol15:105–191
    [Google Scholar]
  6. Chesson P.. 2000; Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst31:343–366[CrossRef]
    [Google Scholar]
  7. Chiang P., Burrows L. L.. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol185:2374–2378[CrossRef]
    [Google Scholar]
  8. Christensen B. B., Haagensen J. A. J., Heydorn A., Molin S.. 2002; Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol68:2495–2502[CrossRef]
    [Google Scholar]
  9. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745[CrossRef]
    [Google Scholar]
  10. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322[CrossRef]
    [Google Scholar]
  11. Crespi B. J.. 2001; The evolution of social behavior in microorganisms. Trends Ecol Evol16:178–183[CrossRef]
    [Google Scholar]
  12. Davey M. E., Caiazza N. C., O'Toole G. A.. 2003; Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol185:1027–1036[CrossRef]
    [Google Scholar]
  13. Drenkard E., Ausubel F. M.. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature416:740–743[CrossRef]
    [Google Scholar]
  14. Edwards J. S., Ibarra R. U., Palsson B. O.. 2001; In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol19:125–130[CrossRef]
    [Google Scholar]
  15. Gilbert P., Maira-Litran T., McBain A. J., Rickard A. H., Whyte F. W.. 2002; The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol46:202–256
    [Google Scholar]
  16. Hardin G.. 1968; The tragedy of the commons. Science162:1243–1248[CrossRef]
    [Google Scholar]
  17. Hauert C., De Monte S., Hofbauer J., Sigmund K.. 2002; Volunteering as red queen mechanism for cooperation in public goods games. Science296:1129–1132[CrossRef]
    [Google Scholar]
  18. Heijnen J. J., van Dijken J. P.. 1992; In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng39:833–858[CrossRef]
    [Google Scholar]
  19. Hofbauer J., Sigmund K.. 1998; Evolutionary Games and Population Dynamics Cambridge: Cambridge University Press;
  20. Joseph S. J., Hugenholtz P., Sangwan P., Osborne C. A., Janssen P. H.. 2003; Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol69:7210–7215[CrossRef]
    [Google Scholar]
  21. Kappler O., Janssen P. H., Kreft J.-U., Schink B.. 1997; Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology143:1105–1114[CrossRef]
    [Google Scholar]
  22. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol48:1511–1524[CrossRef]
    [Google Scholar]
  23. Koch A. L.. 1985; The macroeconomics of bacterial growth. In Bacteria in their Natural Environments pp1–42 Edited by Fletcher M., Floodgate G. D.. London: Academic Press;
  24. Kreft J.-U., Schink B.. 1993; Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS4. Arch Microbiol159:308–315[CrossRef]
    [Google Scholar]
  25. Kreft J.-U., Picioreanu C., Wimpenny J. W. T., van Loosdrecht M. C. M.. 2001; Individual-based modelling of biofilms. Microbiology147:2897–2912
    [Google Scholar]
  26. Lai C. H., Listgarten M. A., Rosan B.. 1975; Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase-labeled antibody: localization of Streptococcus sanguis in intact dental plaque. Infect Immun11:200–210
    [Google Scholar]
  27. Lawrence J. R., Caldwell D. E.. 1987; Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol14:15–27[CrossRef]
    [Google Scholar]
  28. Listgarten M. A.. 2000; The structure of dental plaque. Periodontology5:52–65
    [Google Scholar]
  29. Marr A. G.. 1991; Growth rate of Escherichia coli. Microbiol Rev55:316–333
    [Google Scholar]
  30. Maynard Smith J.. 1982; Evolution and the Theory of Games Cambridge: Cambridge University Press;
  31. Møller K., Christensen B., Olsson L, Förster J., Piskur J., Nielsen J.. 2002; Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng77:186–193[CrossRef]
    [Google Scholar]
  32. Müller R. H., Babel W.. 1993; Oxidative capacity determines the growth rate with Acetobacter methanolicus. Acta Biotechnol13:3–11[CrossRef]
    [Google Scholar]
  33. Nielsen A. T., Tolker-Nielsen T., Barken K. B., Molin S.. 2000; Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol2:59–68[CrossRef]
    [Google Scholar]
  34. Nowak M. A., May R. M.. 1992; Evolutionary games and spatial chaos. Nature359:826–829[CrossRef]
    [Google Scholar]
  35. O'Toole G., Kaplan H. B., Kolter R.. 2000; Biofilm formation as microbial development. Annu Rev Microbiol54:49–79[CrossRef]
    [Google Scholar]
  36. Palmer R. J., Kazmerzak K., Hansen M. C., Kolenbrander P. E.. 2001; Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun69:5794–5804[CrossRef]
    [Google Scholar]
  37. Pfeiffer T., Bonhoeffer S.. 2003; An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci U S A100:1095–1098[CrossRef]
    [Google Scholar]
  38. Pfeiffer T., Schuster S., Bonhoeffer S.. 2001; Cooperation and competition in the evolution of ATP-producing pathways. Science292:504–507[CrossRef]
    [Google Scholar]
  39. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J.. 1998; Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng58:101–116[CrossRef]
    [Google Scholar]
  40. Rainey P. B., Rainey K.. 2003; Evolution of cooperation and conflict in experimental bacterial populations. Nature425:72–74[CrossRef]
    [Google Scholar]
  41. Rice A. R., Hamilton M. A., Camper A. K.. 2000; Apparent surface associated lag time in growth of primary biofilm cells. Microb Ecol40:8–15[CrossRef]
    [Google Scholar]
  42. Seeliger S., Janssen P. H., Schink B.. 2002; Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett211:65–70[CrossRef]
    [Google Scholar]
  43. Sigmund K.. 1994; Games of Life Oxford: Oxford University Press;
    [Google Scholar]
  44. Sober E., Wilson S. D.. 1998; Unto Others: the Evolution and Psychology of Unselfish Behaviour Cambridge, MA: Harvard University Press;
  45. Stoodley P., Wilson S., Hall-Stoodley L., Boyle J. D., Lappin-Scott H. M., Costerton J. W.. 2001; Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol67:5608–5613[CrossRef]
    [Google Scholar]
  46. Strassmann J. E., Zhu Y., Queller D. C.. 2000; Altruism and social cheating in the social amoeba Dictyostelium discoideum Nature408:965–967[CrossRef]
    [Google Scholar]
  47. Tolker-Nielsen T., Molin S.. 2000; Spatial organization of microbial biofilm communities. Microb Ecol40:75–84
    [Google Scholar]
  48. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S.. 2000; Development and dynamics of Pseudomonas sp. biofilms J Bacteriol182:6482–6489[CrossRef]
    [Google Scholar]
  49. Turner P. E., Chao L.. 1999; Prisoner's dilemma in an RNA virus. Nature398:441–443[CrossRef]
    [Google Scholar]
  50. Turner P. E., Chao L.. 2003; Escape from Prisoner's Dilemma in RNA phage phi6. Am Nat161:497–505[CrossRef]
    [Google Scholar]
  51. Velicer G. J.. 2003; Social strife in the microbial world. Trends Microbiol11:330–337[CrossRef]
    [Google Scholar]
  52. Velicer G. J., Lenski R. E.. 1999; Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology80:1168–1179[CrossRef]
    [Google Scholar]
  53. Velicer G. J., Yu Y. T.. 2003; Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature425:75–78[CrossRef]
    [Google Scholar]
  54. Velicer G. J., Schmidt T. M., Lenski R. E.. 1999; Application of traditional and phylogenetically based comparative methods to test for a trade-off in bacterial growth rate at low versus high substrate concentration. Microb Ecol38:191–200[CrossRef]
    [Google Scholar]
  55. Velicer G. J., Kroos L., Lenski R. E.. 2000; Developmental cheating in the social bacterium Myxococcus xanthus. Nature404:598–601[CrossRef]
    [Google Scholar]
  56. Watnick P., Kolter R.. 2000; Biofilm, city of microbes. J Bacteriol182:2675–2679[CrossRef]
    [Google Scholar]
  57. Westerhoff H. V., van Dam K.. 1987; Thermodynamics and Control of Biological Free-Energy Transduction Amsterdam: Elsevier;
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26829-0
Loading
/content/journal/micro/10.1099/mic.0.26829-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error