1887

Abstract

Activated sludge plants designed to remove phosphorus microbiologically often perform unreliably. One suggestion is that the polyphosphate-accumulating organisms (PAO) are out-competed for substrates by another group of bacteria, the glycogen-accumulating organisms (GAO) in the anaerobic zones of these processes. This study used fluorescence hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) to analyse the communities from laboratory-scale anaerobic : aerobic sequencing batch reactors. Members of the genus in the - were present in large numbers in communities with poor phosphorus removal capacity where the biomass had a high glycogen content. Their ability to store poly--hydroxyalkanoates anaerobically, but not aerobically, and not accumulate polyphosphate aerobically is consistent with these organisms behaving as GAO there. No evidence was found to support an important role for the - as possible GAO in these communities, although these bacterial populations have been considered in other studies to act as possible competitors for the PAO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26825-0
2004-07-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502267.html?itemId=/content/journal/micro/10.1099/mic.0.26825-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search program. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Amann, R. I., Ludwig, W. & Schleifer, K.-H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 443–469.
    [Google Scholar]
  3. Bond, P. L., Erhart, R., Wagner, M., Keller, J. & Blackall, L. L. ( 1999; ). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65, 4077–4084.
    [Google Scholar]
  4. Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Doré, J., Delgenes, P., Moletta, R. & Wagner, M. ( 2000; ). Ecological study of a bioaugmentation failure. Environ Microbiol 2, 179–190.[CrossRef]
    [Google Scholar]
  5. Cech, J. S. & Hartman, P. ( 1993; ). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system. Water Res 27, 1219–1225.[CrossRef]
    [Google Scholar]
  6. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDB-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  7. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D. & Blackall, L. L. ( 2000; ). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantification. Appl Environ Microbiol 66, 1175–1182.[CrossRef]
    [Google Scholar]
  8. Crocetti, G. R., Banfield, J. F., Keller, J., Bond, P. L. & Blackall, L. L. ( 2002; ). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148, 3353–3364.
    [Google Scholar]
  9. Dabert, P., Sialve, B., Delgenes, J. P., Moletta, R. & Godon, J. J. ( 2001; ). Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl Microbiol Biotechnol 55, 500–509.[CrossRef]
    [Google Scholar]
  10. Daims, H., Bruhl, A., Amann, R., Schleifer, K.-H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  11. Eschenhagen, M., Schuppler, M. & Röske, I. ( 2003; ). Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res 37, 3224–3232.[CrossRef]
    [Google Scholar]
  12. Falvo, A., Levantesi, C., Rossetti, S., Seviour, R. J. & Tandoi, V. ( 2001; ). Synthesis of intracellular storage polymers by Amaricoccus kaplicensis, a tetrad forming bacterium present in activated sludge. J Appl Microbiol 91, 299–305.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1989; ). phylip – Phylogeny Inference Package. Cladistics 5, 164–166.
    [Google Scholar]
  14. Felske, A., Rhiems, H., Wolterink, A., Stackebrandt, E. & Akkermans, A. D. L. ( 1997; ). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 2983–2989.[CrossRef]
    [Google Scholar]
  15. Filipe, C. D. M., Daigger, G. T. & Grady, C. P. L. ( 2001; ). Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms. Water Environ Res 73, 213–222.[CrossRef]
    [Google Scholar]
  16. Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. ( 1999; ). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphorus removal in activated sludge. Syst Appl Microbiol 22, 454–465.[CrossRef]
    [Google Scholar]
  17. Heuer, H., Wieland, G., Schönfeld, J., Schönwälder, A., Gomes, N. C. M. & Smalla, K. ( 2001; ). Bacterial community profiling using DGGE or TGGE analysis. In Environmental Molecular Microbiology, pp. 177–190. Edited by P. A. Rochelle. Wymondham: Horizon.
  18. Kitamura, S. & Doi, Y. ( 1996; ). Staining method of poly(3-hydroxyalkanoic acids) producing bacteria by Nile Blue. Biotechnol Techniques 8, 345–350.
    [Google Scholar]
  19. Kong, Y. H., Beer, M., Seviour, R. J., Lindrea, K. C. & Rees, G. N. ( 2001; ). Structure and functional analysis of the microbial community in an aerobic: anaerobic sequencing batch reactor (SBR) with no phosphorus removal. Syst Appl Microbiol 24, 597–609.[CrossRef]
    [Google Scholar]
  20. Kong, Y. H., Beer, M., Rees, G. N. & Seviour, R. J. ( 2002a; ). Functional analysis of microbial communities in aerobic : anaerobic sequencing batch reactors fed with different phosphorus/carbon ratios. Microbiology 148, 2299–2307.
    [Google Scholar]
  21. Kong, Y. H., Ong, S. L., Ng, W. J. & Liu, W.-T. ( 2002b; ). Diversity and distribution of a novel group found in anaerobic : aerobic activated sludge processes. Environ Microbiol 4, 826–835.
    [Google Scholar]
  22. Levantesi, C., Serafim, L. S., Crocetti, G. R., Lemos, P. C., Rossetti, S., Blackall, L. L. & Tandoi, V. ( 2002; ). Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor. Environ Microbiol 4, 559–569.[CrossRef]
    [Google Scholar]
  23. Liu, W.-T., Nakamura, K., Matsuo, T. & Mino, T. ( 1997; ). Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors – effect of P/C feeding ratio. Water Res 31, 1430–1438.[CrossRef]
    [Google Scholar]
  24. Liu, W.-T., Linning, K. D., Nakamura, K., Mino, T., Matsuo, T. & Forney, L. J. ( 2000; ). Microbial community changes in biological phosphate-removing systems on altering sludge phosphorus content. Microbiology 146, 1099–1107.
    [Google Scholar]
  25. Liu, W.-T., Nielsen, A. T., Wu, J.-H., Tsai, C.-S., Matsuo, Y. & Molin, M. ( 2001; ). In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3, 110–122.[CrossRef]
    [Google Scholar]
  26. Loy, A., Horn, M. & Wagner, M. ( 2003; ). probeBase – an online resource for rRNA targeted oligonucleotide probes. Nucleic Acids Res 31, 514–516.[CrossRef]
    [Google Scholar]
  27. Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleiffer, K.-H. ( 1992; ). Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15, 593–600.[CrossRef]
    [Google Scholar]
  28. Maszenan, A.-M., Seviour, R. J., Patel, B. K. C., Rees, G. N. & McDougall, B. M. ( 1997; ). Amaricoccus gen. nov., a Gram-negative coccus occuring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov. and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 47, 727–734.[CrossRef]
    [Google Scholar]
  29. Myers, R. M., Fischer, S. G., Lerman, L. S. & Maniatis, T. ( 1985; ). Nearly all base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13, 3131–3145.[CrossRef]
    [Google Scholar]
  30. Neef, A., Witzenberger, R. & Kämpfer, P. ( 1999; ). Detection of Sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23, 261–267.[CrossRef]
    [Google Scholar]
  31. Nielsen, A. T., Liu, W.-T., Philips, C., Grady, L., Molin, J. S. & Stahl, D. A. ( 1999; ). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal process. Appl Environ Microbiol 58, 2717–2722.
    [Google Scholar]
  32. Schönborn, C., Bauer, H.-D. & Röske, I. ( 2001; ). Stability of enhanced biological phosphorus removal and composition of polyphosphate granules. Water Res 35, 3190–3196.[CrossRef]
    [Google Scholar]
  33. Serafim, L. S., Lemos, P. C., Levantesi, C., Tandoi, V., Santos, H. & Reis, M. A. M. ( 2002; ). Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51, 1–18.[CrossRef]
    [Google Scholar]
  34. Seviour, R. J., Maszenan, A. M., Soddell, J. A., Tandoi, V., Patel, B. K. C., Kong, Y. & Schumann, P. ( 2000; ). Microbiology of the ‘G-bacteria’ in activated sludge. Environ Microbiol 2, 581–593.[CrossRef]
    [Google Scholar]
  35. Seviour, R. J., Mino, T. & Onuki, M. ( 2003; ). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27, 99–127.[CrossRef]
    [Google Scholar]
  36. Shintani, T., Liu, W.-T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, Y. & Nakamura, K. ( 2000; ). Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50, 201–207.[CrossRef]
    [Google Scholar]
  37. Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K. H. ( 1997; ). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63, 2884–2896.
    [Google Scholar]
  38. Tsai, C.-S. & Liu, W.-T. ( 2002; ). Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Sci Technol 46, 179–184.
    [Google Scholar]
  39. Wagner, M. & Loy, A. ( 2002; ). Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13, 218–227.[CrossRef]
    [Google Scholar]
  40. Weller, R., Glöckner, F. O. & Amann, R. ( 2000; ). 16S rRNA oligonucleotide probes for the in situ detection of members of the phylum Cytophaga-Flavobacterium-Bacteroides. Syst Appl Microbiol 23, 107–114.[CrossRef]
    [Google Scholar]
  41. Whang, L.-M. & Park, J. K. ( 2002; ). Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems – effect of temperature. Water Sci Technol 46, 191–194.
    [Google Scholar]
  42. Yeates, C., Saunders, A. M., Crocetti, G. R. & Blackall, L. L. ( 2003; ). Limitations of the widely used GAM42a and BET42a probes targeting bacteria in the Gammaproteobacteria radiation. Microbiology 149, 1239–1247.[CrossRef]
    [Google Scholar]
  43. Zilles, J. L., Peccia, J., Kim, M.-W., Hung, C.-H. & Noguera, D. R. ( 2002; ). Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68, 2763–2769.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26825-0
Loading
/content/journal/micro/10.1099/mic.0.26825-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 2267-2275

Three of the sequences given in Table 2 in this paper are incorrect. The SBR9-1a, SBR91b and SBR8-4 sequences were inadvertently given as the target sequence and not the probe sequence. A corrected version of Table 2 is available [PDF].



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error