1887

Abstract

Fatty acid synthases (primary metabolism), non-ribosomal peptide synthases and polyketide synthases (secondary metabolism) contain phosphopantetheinyl (Ppant)-dependent carrier proteins that must be made functionally active by transfer of the 4′-Ppant moiety from coenzyme A. These reactions are usually catalysed by dedicated Ppant transferases. Although rich in Ppant-dependent carrier proteins, it was previously shown that possesses only one Ppant transferase, encoded by , which functions in both primary and secondary metabolism. Consistent with this notion are our findings that can genetically complement mutations in the and genes, encoding the apo-acyl carrier protein (ACP) synthase of fatty acid synthesis and a Ppant transferase of enterobactin synthesis, respectively. It also complements a mutation affecting a gene encoding a Ppant transferase essential for surfactin synthesis. A insertion mutant could only be constructed in a strain carrying the gene on a chromosomally integrated element , implying that the essentiality of is due to its requirement for activation of apo-ACP of fatty acid synthesis. The conditional mutant is non-fluorescent, does not produce pyoverdine and pyochelin, and does not grow in the presence of iron chelators. The data presented here for the first time confirm that PcpS plays an essential role in both fatty acid and siderophore metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26823-0
2004-04-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500795.html?itemId=/content/journal/micro/10.1099/mic.0.26823-0&mimeType=html&fmt=ahah

References

  1. Ackerley D. F., Caradoc-Davies T. T., Lamont I. L.. 2003; Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. J Bacteriol185:2848–2855[CrossRef]
    [Google Scholar]
  2. Beare P. A., For R. J., Martin L. W., Lamont I. L.. 2003; Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol47:195–207
    [Google Scholar]
  3. Beinlich K. L., Chuanchuen R., Schweizer H. P.. 2001; Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett198:129–134[CrossRef]
    [Google Scholar]
  4. Coderre P. E., Earhardt C. F.. 1989; The entD gene of the Escherichia coli K12 enterobactin gene cluster. J Gen Microbiol135:3043–3055
    [Google Scholar]
  5. Cox C. D., Graham R.. 1979; Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol137:357–364
    [Google Scholar]
  6. Finking R., Solsbacher J., Konz D., Schobert M., Schaefer A., Jahn D., Marahiel M. A.. 2002; Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J Biol Chem277:50293–50302[CrossRef]
    [Google Scholar]
  7. Flugel R. S., Hwangbo Y., Lambalot R. H., Cronan J. E., Walsh C. T.. 2000; Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J Biol Chem275:959–960[CrossRef]
    [Google Scholar]
  8. Grossman T. H., Truckman M., Ellestad S., Osburne M. S.. 1993; Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship betweenB. subtilis sfp0 and Escherichia coli entD genes. J Bacteriol175:6203–6211
    [Google Scholar]
  9. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86[CrossRef]
    [Google Scholar]
  10. Hoang T. T., Ma Y., Stern R. J., McNeil M. R., Schweizer H. P.. 1999; Construction and use of low-copy number T7 expression vectors for purification of problem proteins: purification of Mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of RhlI. Gene237:361–371[CrossRef]
    [Google Scholar]
  11. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P.. 2000; Integration proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid43:59–72[CrossRef]
    [Google Scholar]
  12. Hoefte M., Buysens S., Koedam N., Cornelis P.. 1993; Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. BioMetals6:85–91
    [Google Scholar]
  13. Kutchma A. J., Hoang T. T., Schweizer H. P.. 1999; Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A : ACP transacylase (FabD. J Bacteriol181:5498–5504
    [Google Scholar]
  14. Lambalot R. H., Walsh C. T.. 1995; Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem270:24658–24661[CrossRef]
    [Google Scholar]
  15. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T.. 1996; A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol3:923–936[CrossRef]
    [Google Scholar]
  16. Lamont I. L., Martin L. W.. 2003; Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology149:833–842[CrossRef]
    [Google Scholar]
  17. Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., Vasil M. L.. 2002; Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A99:7072–7077[CrossRef]
    [Google Scholar]
  18. Lehoux D. E., Sanschagrin F., Levesque R. C.. 2000; Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis inPseudomonas aeruginosa. FEMS Microbiol Lett190:141–146[CrossRef]
    [Google Scholar]
  19. McAllister K. A., Peery R. B., Meier T. I., Fischl A. S., Zhao G.. 2000; Biochemical and molecular analyses of the Streptococcus pneumoniae acyl carrier protein synthase, an enzyme essential for fatty acid biosynthesis. J Biol Chem275:30864–30872[CrossRef]
    [Google Scholar]
  20. Meyer J.-M., Stintzi A.. 1998; Iron metabolism and siderophores in Pseudomonas and related species. In Biotechnology Handbooks 10 – Pseudomonas pp.201–243 Edited by Montie T. C.. New York: Plenum;
  21. Miller J. H.. 1992; A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  22. Mootz H. D., Finking R., Marahiel M. A.. 2001; 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem276:37289–37298[CrossRef]
    [Google Scholar]
  23. Nakano M. M., Corbell N., Besson J., Zuber P.. 1992; Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide surfactant, surfactin, in Bacillus subtilis. Mol Gen Genet232:313–321
    [Google Scholar]
  24. Peters J. E., Thate T. E., Craig N. L.. 2003; Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol185:2017–2021[CrossRef]
    [Google Scholar]
  25. Ravel J., Cornelis P.. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200[CrossRef]
    [Google Scholar]
  26. Reimmann C., Patel H. M., Serino L., Barone M., Walsh C. T., Haas D.. 2001; Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol183:813–820[CrossRef]
    [Google Scholar]
  27. Reuter K., Mofid M. R., Marahiel M. A., Ficner R.. 1999; Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J18:6823–6831[CrossRef]
    [Google Scholar]
  28. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  29. Schweizer H. P.. 1993; Small broad-host-range gentamycin resistance cassettes for site-specific insertion and deletion mutagenesis. BioTechniques15:831–833
    [Google Scholar]
  30. Schweizer H. P., Hoang T. T., Propst K. L., Ornelas H. R., Karkhoff-Schweizer R. R.. 2001; Vector design and development of host systems for Pseudomonas. In Genetic Engineering pp.69–81 Edited by Setlow J. K.. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  31. Schwyn B., Neilands J. B.. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56[CrossRef]
    [Google Scholar]
  32. Takase H., Nitanai H., Hoshino K., Otani T.. 2000; Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun68:1834–1839[CrossRef]
    [Google Scholar]
  33. Takiff H. E., Baker T., Copeland T., Chen S.-M., Court D. L.. 1992; Locating essential genes by using mini-Tn10 transposons: the pdxJ operon. J Bacteriol174:1544–1553
    [Google Scholar]
  34. Walsh C. T., Gehring A. M., Weinreb P. H., Quadri L. E., Flugel R. S.. 1997; Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol1:309–315[CrossRef]
    [Google Scholar]
  35. Watson J. M., Holloway B. W.. 1978; Chromosome mapping in Pseudomonas aeruginosa. J Bacteriol133:1113–1125
    [Google Scholar]
  36. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. 1994; Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and the sequence of the region required for their replication inPseudomonas aeruginosa. Gene128:81–86
    [Google Scholar]
  37. Wu S.-C., Wong S.-L.. 1999; Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J Biotechnol72:185–195[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26823-0
Loading
/content/journal/micro/10.1099/mic.0.26823-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error