1887

Abstract

Type IV pili (TFP) are important colonization factors of the opportunistic pathogen , involved in biofilm formation and attachment to host cells. This study undertook a comprehensive analysis of TFP alleles in more than 290 environmental, clinical, rectal and cystic fibrosis (CF) isolates of . Based on the results, a new system of nomenclature is proposed, in which TFP are divided into five distinct phylogenetic groups. Each pilin allele is stringently associated with characteristic, distinct accessory genes that allow the identification of the allele by specific PCR. The invariant association of the pilin and accessory genes implies horizontal transfer of the entire locus. Analysis of pilin allele distribution among isolates from various sources revealed a striking bias in the prevalence of isolates with group I pilin genes from CF compared with non-CF human sources (<0·0001), suggesting this particular pilin type, which can be post-translationally modified by glycosylation via the action of TfpO (PilO), may confer a colonization or persistence advantage in the CF host. This allele was also predominant in paediatric CF isolates (29 of 43; 67·4 %), showing that this bias is apparent early in colonization. Group I pilins were also the most common type found in environmental isolates tested. To the authors' knowledge, this is the first example of a virulence factor allele that is strongly associated with CF isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26822-0
2004-05-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501315.html?itemId=/content/journal/micro/10.1099/mic.0.26822-0&mimeType=html&fmt=ahah

References

  1. Alonso A., Rojo F., Martinez J. L.. 1999; Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol1:421–430[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Arbeit R.. 1995; Laboratory procedures for the epidemiologic analysis of microorganisms. In Manual of Clinical Microbiology pp.190–208Edited by Murray P. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bryan R., Kube D., Perez A., Davis P., Prince A.. 1998; Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol19:269–277[CrossRef]
    [Google Scholar]
  5. Campbell A. P., McInnes C., Hodges R. S., Sykes B. D.. 1995; Comparison of NMR solution structures of the receptor binding domains of Pseudomonas aeruginosa pili strains PAO, KB7, and PAK: implications for receptor binding and synthetic vaccine design. Biochemistry34:16255–16268[CrossRef]
    [Google Scholar]
  6. Campbell A. P., Wong W. Y., Houston M., Jr.6 other authors 1997; Interaction of the receptor binding domains of Pseudomonas aeruginosa pili strains PAK, PAO, KB7 and P1 to a cross-reactive antibody and receptor analog: implications for synthetic vaccine design. J Mol Biol267:382–402[CrossRef]
    [Google Scholar]
  7. Castric P.. 1995; pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology141:1247–1254[CrossRef]
    [Google Scholar]
  8. Castric P. A., Deal C. D.. 1994; Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect Immun62:371–376
    [Google Scholar]
  9. Castric P., Cassels F. J., Carlson R. W.. 2001; Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J Biol Chem276:26479–26485[CrossRef]
    [Google Scholar]
  10. Choi J. Y., Sifri C. D., Goumnerov B. C., Rahme L. G., Ausubel F. M., Calderwood S. B.. 2002; Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol184:952–961[CrossRef]
    [Google Scholar]
  11. Comer J. E., Marshall M. A., Blanch V. J., Deal C. D., Castric P.. 2002; Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect Immun70:2837–2845[CrossRef]
    [Google Scholar]
  12. Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., Van Delden C., Curty L. K., Kohler T.. 2002; Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol184:3027–3033[CrossRef]
    [Google Scholar]
  13. da Silva A. C., Ferro J. A., Reinach F. C..62 other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature417:459–463[CrossRef]
    [Google Scholar]
  14. D'Argenio D. A., Gallagher L. A., Berg C. A., Manoil C.. 2001; Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol183:1466–1471[CrossRef]
    [Google Scholar]
  15. Doig P., Todd T., Sastry P. A., Lee K. K., Hodges R. S., Paranchych W., Irvin R. T.. 1988; Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun56:1641–1646
    [Google Scholar]
  16. Eckhardt T.. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid1:584–588[CrossRef]
    [Google Scholar]
  17. Farinha M. A., Conway B. D., Glasier L. M., Ellert N. W., Irvin R. T., Sherburne R., Paranchych W.. 1994; Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun62:4118–4123
    [Google Scholar]
  18. Felsenstein J.. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics5:164–166
    [Google Scholar]
  19. Forest K. T., Dunham S. A., Koomey M., Tainer J. A.. 1999; Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol Microbiol31:743–752[CrossRef]
    [Google Scholar]
  20. Gardam M. A., Burrows L. L., Kus J. V., Brunton J., Low D. E., Conly J. M., Humar A.. 2002; Is surveillance for multidrug-resistant enterobacteriaceae an effective infection control strategy in the absence of an outbreak?. J Infect Dis186:1754–1760[CrossRef]
    [Google Scholar]
  21. Garrett E. S., Perlegas D., Wozniak D. J.. 1999; Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU. J Bacteriol181:7401–7404
    [Google Scholar]
  22. Gibbs C. P., Reimann B. Y., Schultz E., Kaufmann A., Haas R., Meyer T. F.. 1989; Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature338:651–652[CrossRef]
    [Google Scholar]
  23. Goldberg J. B., Ohman D. E.. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol158:1115–1121
    [Google Scholar]
  24. Hahn H. P.. 1997; The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene192:99–108[CrossRef]
    [Google Scholar]
  25. Hertle R., Mrsny R., Fitzgerald D. J.. 2001; Dual-function vaccine for Pseudomonas aeruginosa: characterization of chimeric exotoxin A-pilin protein. Infect Immun69:6962–6969[CrossRef]
    [Google Scholar]
  26. Hogan D. A., Kolter R.. 2002; Pseudomonas-Candida interactions: an ecological role for virulence factors. Science296:2229–2232[CrossRef]
    [Google Scholar]
  27. Irvin R. T., Doig P., Lee K. K., Sastry P. A., Paranchych W., Todd T., Hodges R. S.. 1989; Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain. Infect Immun57:3720–3726
    [Google Scholar]
  28. Jacobs M. A., Alwood A., Thaipisuttikul I..12 other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A100:14339–14344[CrossRef]
    [Google Scholar]
  29. Johnson K., Parker M. L., Lory S.. 1986; Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J Biol Chem261:15703–15708
    [Google Scholar]
  30. Jones D. T., Taylor W. R., Thornton J. M.. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8:275–282
    [Google Scholar]
  31. Keizer D. W., Slupsky C. M., Kalisiak M., Campbell A. P., Crump M. P., Sastry P. A., Hazes B., Irvin R. T., Sykes B. D.. 2001; Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem276:24186–24193[CrossRef]
    [Google Scholar]
  32. Kennan R. M., Dhungyel O. P., Whittington R. J., Egerton J. R., Rood J. I.. 2001; The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol183:4451–4458[CrossRef]
    [Google Scholar]
  33. Kumar S., Tamura K., Jakobsen I. B., Nei M.. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics17:1244–1245[CrossRef]
    [Google Scholar]
  34. Lightfoot J., Lam J. S.. 1993; Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: a role for guanosine diphospho (GDP)-d-mannose. Mol Microbiol8:771–782[CrossRef]
    [Google Scholar]
  35. Liu H., Kang Y., Genin S., Schell M. A., Denny T. P.. 2001; Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiology147:3215–3229
    [Google Scholar]
  36. Lu H. M., Motley S. T., Lory S.. 1997; Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol Microbiol25:247–259[CrossRef]
    [Google Scholar]
  37. Lyczak J. B., Cannon C. L., Pier G. B.. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect2:1051–1060[CrossRef]
    [Google Scholar]
  38. Mahenthiralingam E., Campbell M. E., Speert D. P.. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun62:596–605
    [Google Scholar]
  39. Marceau M., Nassif X.. 1999; Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol181:656–661
    [Google Scholar]
  40. Mattick J. S.. 2002; Type IV pili and twitching motility. Annu Rev Microbiol56:289–314[CrossRef]
    [Google Scholar]
  41. Mesyanzhinov V. V., Robben J., Grymonprez B., Kostyuchenko V. A., Bourkaltseva M. V., Sykilinda N. N., Krylov V. N., Volckaert G.. 2002; The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol317:1–19[CrossRef]
    [Google Scholar]
  42. O'Toole G. A., Kolter R.. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304[CrossRef]
    [Google Scholar]
  43. Paranchych W., Sastry P. A., Volpel K., Loh B. A., Speert D. P.. 1986; Fimbriae (pili): molecular basis of Pseudomonas aeruginosa adherence. Clin Invest Med9:113–118
    [Google Scholar]
  44. Pasloske B. L., Finlay B. B., Paranchych W.. 1985; Cloning and sequencing of the Pseudomonas aeruginosa PAK pilin gene. FEBS Lett183:408–412[CrossRef]
    [Google Scholar]
  45. Pasloske B. L., Sastry P. A., Finlay B. B., Paranchych W.. 1988a; Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa. J Bacteriol170:3738–3741
    [Google Scholar]
  46. Pasloske B. L., Joffe A. M., Sun Q., Volpel K., Paranchych W., Eftekhar F., Speert D. P.. 1988b; Serial isolates of Pseudomonas aeruginosa from a cystic fibrosis patient have identical pilin sequences. Infect Immun56:665–672
    [Google Scholar]
  47. Penketh A., Pitt T., Roberts D., Hodson M. E., Batten J. C.. 1983; The relationship of phenotype changes in Pseudomonas aeruginosa to the clinical condition of patients with cystic fibrosis. Am Rev Respir Dis127:605–608
    [Google Scholar]
  48. Pukatzki S., Kessin R. H., Mekalanos J. J.. 2002; The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoebaDictyostelium discoideum. Proc Natl Acad Sci U S A99:3159–3164[CrossRef]
    [Google Scholar]
  49. Rahme L. G., Ausubel F. M., Cao H..9 other authors 2000; Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A97:8815–8821[CrossRef]
    [Google Scholar]
  50. Reiter W. D., Palm P., Yeats S.. 1989; Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res17:1907–1914[CrossRef]
    [Google Scholar]
  51. Romling U., Tummler B.. 2000; Achieving 100% typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis. J Clin Microbiol38:464–465
    [Google Scholar]
  52. Saiman L., Prince A.. 1993; Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest92:1875–1880[CrossRef]
    [Google Scholar]
  53. Saiman L., Sadoff J., Prince A.. 1989; Cross-reactivity of Pseudomonas aeruginosa antipilin monoclonal antibodies with heterogeneous strains ofP. aeruginosa and Pseudomonas cepacia. Infect Immun57:2764–2770
    [Google Scholar]
  54. Sastry P. A., Finlay B. B., Pasloske B. L., Paranchych W., Pearlstone J. R., Smillie L. B.. 1985; Comparative studies of the amino acid and nucleotide sequences of pilin derived from Pseudomonas aeruginosa PAK and PAO. J Bacteriol164:571–577
    [Google Scholar]
  55. Schroeder T. H., Zaidi T., Pier G. B.. 2001; Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM(1) on epithelial cells. Infect Immun69:719–729[CrossRef]
    [Google Scholar]
  56. Semmler A. B., Whitchurch C. B., Mattick J. S.. 1999; A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology145:2863–2873
    [Google Scholar]
  57. Sheth H. B., Glasier L. M., Ellert N. W., Cachia P., Kohn W., Lee K. K., Paranchych W., Hodges R. S., Irvin R. T.. 1995; Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomed Pept Proteins Nucleic Acids1:141–148
    [Google Scholar]
  58. Spangenberg C., Fislage R., Sierralta W., Tummler B., Romling U.. 1995; Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiol Lett125:265–273[CrossRef]
    [Google Scholar]
  59. Speert D. P., Campbell M. E., Henry D. A., Milner R., Taha F., Gravelle A., Davidson A. G., Wong L. T., Mahenthiralingam E.. 2002; Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med166:988–993[CrossRef]
    [Google Scholar]
  60. Stanislavsky E. S., Lam J. S.. 1997; Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol Rev21:243–277[CrossRef]
    [Google Scholar]
  61. Stover C. K., Pham X. Q., Erwin A. L..28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature406:959–964[CrossRef]
    [Google Scholar]
  62. Strom M. S., Lory S.. 1993; Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol47:565–596[CrossRef]
    [Google Scholar]
  63. Strom M. S., Nunn D. N., Lory S.. 1993; A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A90:2404–2408[CrossRef]
    [Google Scholar]
  64. Tenover F. C., Arbeit R. D., Goering R. V.. 1997; How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular typing working group of the society for healthcare epidemiology of America. Infect Control Hosp Epidemiol18:426–439[CrossRef]
    [Google Scholar]
  65. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  66. Villar M. T., Helber J. T., Hood B., Schaefer M. R., Hirschberg R. L.. 1999; Eikenella corrodens phase variation involves a posttranslational event in pilus formation. J Bacteriol181:4154–4160
    [Google Scholar]
  67. Villar M. T., Hirschberg R. L., Schaefer M. R.. 2001; Role of the Eikenella corrodens pilA locus in pilus function and phase variation. J Bacteriol183:55–62[CrossRef]
    [Google Scholar]
  68. Wong W. Y., Campbell A. P., McInnes C., Sykes B. D., Paranchych W., Irvin R. T., Hodges R. S.. 1995; Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry34:12963–12972[CrossRef]
    [Google Scholar]
  69. Yorgey P., Rahme L. G., Tan M. W., Ausubel F. M.. 2001; The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol41:1063–1076
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26822-0
Loading
/content/journal/micro/10.1099/mic.0.26822-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error