1887

Abstract

This paper focuses on global gene regulation by FlhD/FlhC in enteric bacteria. Even though FlhD/FlhC can complement an mutant for motility, it is not known if the FlhD/FlhC complex has an effect on metabolism similar to . To study metabolic gene regulation, a partial 8081c microarray was constructed and the expression patterns of wild-type cells were compared to an mutant strain at 25 and 37 °C. The overlap between the and FlhD/FlhC regulated genes was 25 %. Genes that were regulated at least fivefold by FlhD/FlhC in are genes encoding urocanate hydratase (), imidazolone propionase (), carbamoylphosphate synthetase () and aspartate carbamoyltransferase (). These enzymes are part of a pathway that is involved in the degradation of -histidine to -glutamate and eventually leads into purine/pyrimidine biosynthesis via carbamoylphosphate and carbamoylaspartate. A number of other genes were regulated at a lower rate. In two additional experiments, the expression of wild-type cells grown at 4 or 25 °C was compared to the same strain grown at 37 °C. The expression of the flagella master operon was not affected by temperature, whereas the flagella-specific sigma factor was highly expressed at 25 °C and reduced at 4 and 37 °C. Several other flagella genes, all of which are under the control of FliA, exhibited a similar temperature profile. These data are consistent with the hypothesis that temperature regulation of flagella genes might be mediated by the flagella-specific sigma factor FliA and not the flagella master regulator FlhD/FlhC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26814-0
2004-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502289.html?itemId=/content/journal/micro/10.1099/mic.0.26814-0&mimeType=html&fmt=ahah

References

  1. Aguilar, P. S., Hernandez-Arriaga, A. M., Cybulski, L. E., Erazo, A. C. & de Mendoza, D. ( 2001; ). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20, 1681–1691.[CrossRef]
    [Google Scholar]
  2. Aldridge, P. & Hughes, K. T. ( 2002; ). Regulation of flagellar assembly. Curr Opin Microbiol 2, 160–165.
    [Google Scholar]
  3. Barbosa, T. M. & Levy, S. B. ( 2000; ). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182, 3467–3474.[CrossRef]
    [Google Scholar]
  4. Bartlett, D. H., Frantz, B. B. & Matsumura, P. ( 1988; ). Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 170, 1575–1581.
    [Google Scholar]
  5. Bleves, S., Marenn, M.-N., Detry, G. & Cornelis, G. R. ( 2002; ). Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184, 3214–3223.[CrossRef]
    [Google Scholar]
  6. Bochner, B. R., Gadzinski, P. & Panomitros, E. ( 2001; ). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11, 1246–1255.[CrossRef]
    [Google Scholar]
  7. Bradley, R. M., Gander, R. M., Patel, S. K. & Kaplan, H. S. ( 1997; ). Inhibitory effect of 0 degree C storage on the proliferation of Yersinia enterocolitica in donated blood. Transfusion 37, 691–695.[CrossRef]
    [Google Scholar]
  8. Chilcott, G. S. & Hughes, K. T. ( 2000; ). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64, 694–708.[CrossRef]
    [Google Scholar]
  9. Chuang, S. E., Daniels, D. L. & Blattner, F. R. ( 1993; ). Global expression in Escherichia coli. J Bacteriol 175, 2026–2036.
    [Google Scholar]
  10. Cornelis, G. R. ( 2000; ). Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 29, 681–693.
    [Google Scholar]
  11. Cornelis, G. R. ( 2002; ). Yersinia Type III secretion: send in the effectors. J Cell Biol 158, 401–408.[CrossRef]
    [Google Scholar]
  12. de Mendoza, D., Grau, R. & Cronan, J. E. J. ( 1993; ). Biosynthesis and function of membrane lipids. In Bacillus subtilis and Other Gram Positive Bacteria: Physiology, Biochemistry and Molecular Biology, pp. 411–425. Edited by R. Losick & others. Washington, DC: American Society for Microbiology.
  13. Deng, W., Burland, V., Plunkett, G., III & 18 other authors ( 2002; ). Genome sequence of Yersinia pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  14. Fauconnier, A., Allaoui, A., Campos, A., Van Elsen, A., Cornelis, G. R. & Bollen, A. ( 1997; ). Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus in Yersinia enterocolitica. Microbiology 143, 3461–3471.[CrossRef]
    [Google Scholar]
  15. Feng, J., Atkinson, M. R., McCleary, W., Stock, F. B., Wanner, B. L. & Ninfa, A. J. ( 1992; ). Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol 174, 6061–6070.
    [Google Scholar]
  16. Fessenmaier, M., Frank, R., Retey, J. & Schubert, C. ( 1991; ). Cloning and sequencing the urocanase (hutU) from Pseudomonas putida. FEBS Lett 286, 55–57.[CrossRef]
    [Google Scholar]
  17. Francez-Charlot, A., Laugel, B., Van Germert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M.-P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  18. Givskov, M., Eberl, L., Christiansen, M., Benedik, J. & Molin, S. ( 1995; ). Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon FlhD. Mol Microbiol 15, 445–454.[CrossRef]
    [Google Scholar]
  19. Iriarte, M., Stainer, I., Mikulskis, I. & Cornelis, G. R. ( 1995; ). The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 177, 2299–2304.
    [Google Scholar]
  20. Kannan, K., Janiyani, K. L., Shivaji, S. & Ray, M. K. ( 1998; ). Histidine utilization operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 161, 7–14.[CrossRef]
    [Google Scholar]
  21. Kapatral, V. & Minnich, S. A. ( 1995; ). Coordinate, temperature-sensitive regulation of three Yersinia enterocolitica flagellin genes. Mol Microbiol 17, 49–56.[CrossRef]
    [Google Scholar]
  22. Kapatral, V., Olson, J. A., Pepe, J. C., Miller, V. L. & Minnich, S. A. ( 1996; ). Temperature dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol 19, 1061–1071.[CrossRef]
    [Google Scholar]
  23. Kapatral, V., Anderson, I., Ivanova, N. & 22 other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  24. Lawhon, S. D., Frye, J. G., Suyemoto, M., Porwollik, S., McClelland, M. & Altier, C. ( 2003; ). Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48, 1633–1645.[CrossRef]
    [Google Scholar]
  25. Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V. F. & Unden, G. ( 2002; ). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45, 521–532.[CrossRef]
    [Google Scholar]
  26. Liu, X. & Matsumura, P. ( 1994; ). The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176, 7345–7351.
    [Google Scholar]
  27. Liu, X. & Matsumura, P. ( 1995; ). An alternative sigma factor controls transcription of flagellar class III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164, 81–84.[CrossRef]
    [Google Scholar]
  28. Liu, X. & Matsumura, P. ( 1996; ). Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol 21, 613–620.[CrossRef]
    [Google Scholar]
  29. Macnab, R. M. ( 1996; ). Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 123–145. Edited by F. C. Neidhart & others. Washington, DC: American Society for Microbiology.
  30. McDermott, P. F., Ciacci-Woolwine, F., Snipes, J. A. & Mizel, S. B. ( 2000; ). High-affinity interaction between Gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun 68, 5525–5529.[CrossRef]
    [Google Scholar]
  31. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  32. Overbeek, R., Larsen, N., Walunas, T. & 19 other authors ( 2003; ). The ERGO genome analysis and discovery system. Nucleic Acid Res 31, 164–171.[CrossRef]
    [Google Scholar]
  33. Parkhill, J., Wren, B. W., Thomson, N. R. & 32 other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  34. Prüß, B. M. ( 2000; ). FlhD, a transcriptional regulator in bacteria. Rec Res Dev Microbiol 4, 31–42.
    [Google Scholar]
  35. Prüß, B. M. & Matsumura, P. ( 1996; ). A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J Bacteriol 178, 668–674.
    [Google Scholar]
  36. Prüß, B. M. & Matsumura, P. ( 1997; ). Cell cycle regulation of flagellar genes. J Bacteriol 179, 5602–5604.
    [Google Scholar]
  37. Prüß, B. M. & Wolfe, A. J. ( 1994; ). Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12, 973–984.[CrossRef]
    [Google Scholar]
  38. Prüß, B. M., Markovic, D. & Matsumura, P. ( 1997; ). The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol 179, 3818–3821.
    [Google Scholar]
  39. Prüß, B. M., Liu, X., Hendrickson, H. & Matsumura, P. ( 2001; ). FlhD/FlhC regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197, 91–97.[CrossRef]
    [Google Scholar]
  40. Prüß, B. M., Campbell, J. W., Van Dyk, T. K., Zhu, C., Kogan, Y. & Matsumura, P. ( 2003; ). FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185, 534–543.[CrossRef]
    [Google Scholar]
  41. Revell, P. A. & Miller, V. A. ( 2001; ). Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205, 159–164.[CrossRef]
    [Google Scholar]
  42. Rimpilainen, M., Forsberg, A. & Wolf-Watz, H. ( 1992; ). A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol 174, 3355–3363.
    [Google Scholar]
  43. Schmiel, D. H., Young, G. M. & Miller, V. L. ( 2000; ). The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182, 2314–2320.[CrossRef]
    [Google Scholar]
  44. Shin, S. & Park, C. ( 1995; ). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177, 4696–4702.
    [Google Scholar]
  45. Siblini, L., Lafeuillade, B., Ros, A., Le Petit, J. C. & Pozzetto, B. ( 2002; ). Reduction of Yersinia enterocolitica load in deliberately inoculated blood: the effects of blood prestorage temperature and WBC filtration. Transfusion 42, 422–427.[CrossRef]
    [Google Scholar]
  46. Suzuki, I., Los, D. A., Kanesaki, Y., Mikami, K. & Murata, N. ( 2000; ). The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19, 1327–1334.[CrossRef]
    [Google Scholar]
  47. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  48. Wei, B. L., Brun-Zinkernagel, A.-M., Simecka, J. W., Prüß, B. M., Babitzke, P. & Romeo, T. ( 2001; ). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40, 245–256.[CrossRef]
    [Google Scholar]
  49. Young, B. M. & Young, G. M. ( 2002; ). YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol 184, 1324–1334.[CrossRef]
    [Google Scholar]
  50. Young, G. M., Schmiel, D. H. & Miller, V. L. ( 1999a; ). A new pathway for the secretion of the virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96, 6456–6461.[CrossRef]
    [Google Scholar]
  51. Young, G. M., Smith, M., Minnich, S. A. & Miller, V. L. ( 1999b; ). The Yersinia enterocolitica motility master operon, flhDC, is required for flagellin production, swimming, and swarming motility. J Bacteriol 181, 2823–2833.
    [Google Scholar]
  52. Young, G. M., Badger, J. L. & Miller, V. L. ( 2000; ). Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68, 4323–4326.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26814-0
Loading
/content/journal/micro/10.1099/mic.0.26814-0
Loading

Data & Media loading...

Supplements

Microarray raw data, primer pairings and ORF designations are available in supplementary Table 1, Table 2and Table 3(Microsoft Excel files).

EXCEL

Microarray raw data, primer pairings and ORF designations are available in supplementary Table 1, Table 2and Table 3(Microsoft Excel files).

EXCEL

Microarray raw data, primer pairings and ORF designations are available in supplementary Table 1, Table 2and Table 3(Microsoft Excel files).

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error