1887

Abstract

This paper focuses on global gene regulation by FlhD/FlhC in enteric bacteria. Even though FlhD/FlhC can complement an mutant for motility, it is not known if the FlhD/FlhC complex has an effect on metabolism similar to . To study metabolic gene regulation, a partial 8081c microarray was constructed and the expression patterns of wild-type cells were compared to an mutant strain at 25 and 37 °C. The overlap between the and FlhD/FlhC regulated genes was 25 %. Genes that were regulated at least fivefold by FlhD/FlhC in are genes encoding urocanate hydratase (), imidazolone propionase (), carbamoylphosphate synthetase () and aspartate carbamoyltransferase (). These enzymes are part of a pathway that is involved in the degradation of -histidine to -glutamate and eventually leads into purine/pyrimidine biosynthesis via carbamoylphosphate and carbamoylaspartate. A number of other genes were regulated at a lower rate. In two additional experiments, the expression of wild-type cells grown at 4 or 25 °C was compared to the same strain grown at 37 °C. The expression of the flagella master operon was not affected by temperature, whereas the flagella-specific sigma factor was highly expressed at 25 °C and reduced at 4 and 37 °C. Several other flagella genes, all of which are under the control of FliA, exhibited a similar temperature profile. These data are consistent with the hypothesis that temperature regulation of flagella genes might be mediated by the flagella-specific sigma factor FliA and not the flagella master regulator FlhD/FlhC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26814-0
2004-07-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502289.html?itemId=/content/journal/micro/10.1099/mic.0.26814-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D.. 2001; Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J20:1681–1691[CrossRef]
    [Google Scholar]
  2. Aldridge P., Hughes K. T.. 2002; Regulation of flagellar assembly. Curr Opin Microbiol2:160–165
    [Google Scholar]
  3. Barbosa T. M., Levy S. B.. 2000; Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol182:3467–3474[CrossRef]
    [Google Scholar]
  4. Bartlett D. H., Frantz B. B., Matsumura P.. 1988; Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol170:1575–1581
    [Google Scholar]
  5. Bleves S., Marenn M.-N., Detry G., Cornelis G. R.. 2002; Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol184:3214–3223[CrossRef]
    [Google Scholar]
  6. Bochner B. R., Gadzinski P., Panomitros E.. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res11:1246–1255[CrossRef]
    [Google Scholar]
  7. Bradley R. M., Gander R. M., Patel S. K., Kaplan H. S.. 1997; Inhibitory effect of 0 degree C storage on the proliferation of Yersinia enterocolitica in donated blood. Transfusion37:691–695[CrossRef]
    [Google Scholar]
  8. Chilcott G. S., Hughes K. T.. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev64:694–708[CrossRef]
    [Google Scholar]
  9. Chuang S. E., Daniels D. L., Blattner F. R.. 1993; Global expression in Escherichia coli. J Bacteriol175:2026–2036
    [Google Scholar]
  10. Cornelis G. R.. 2000; Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci29:681–693
    [Google Scholar]
  11. Cornelis G. R.. 2002; Yersinia Type III secretion: send in the effectors. J Cell Biol158:401–408[CrossRef]
    [Google Scholar]
  12. de Mendoza D., Grau R., Cronan J. E. J.. 1993; Biosynthesis and function of membrane lipids. In Bacillus subtilis and Other Gram Positive Bacteria: Physiology, Biochemistry and Molecular Biology pp.411–425Edited by Losick R..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Deng W., Burland V., Plunkett G.. III & 18 other authors. 2002; Genome sequence of Yersinia pestis. KIM. J Bacteriol184:4601–4611[CrossRef]
    [Google Scholar]
  14. Fauconnier A., Allaoui A., Campos A., Van Elsen A., Cornelis G. R., Bollen A.. 1997; Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus inYersinia enterocolitica. Microbiology143:3461–3471[CrossRef]
    [Google Scholar]
  15. Feng J., Atkinson M. R., McCleary W., Stock F. B., Wanner B. L., Ninfa A. J.. 1992; Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol174:6061–6070
    [Google Scholar]
  16. Fessenmaier M., Frank R., Retey J., Schubert C.. 1991; Cloning and sequencing the urocanase (hutU) from Pseudomonas putida. FEBS Lett286:55–57[CrossRef]
    [Google Scholar]
  17. Francez-Charlot A., Laugel B., Van Germert A., Dubarry N., Wiorowski F., Castanie-Cornet M.-P., Gutierrez C., Cam K.. 2003; RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol49:823–832
    [Google Scholar]
  18. Givskov M., Eberl L., Christiansen M., Benedik J., Molin S.. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon FlhD. Mol Microbiol15:445–454[CrossRef]
    [Google Scholar]
  19. Iriarte M., Stainer I., Mikulskis I., Cornelis G. R.. 1995; The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol177:2299–2304
    [Google Scholar]
  20. Kannan K., Janiyani K. L., Shivaji S., Ray M. K.. 1998; Histidine utilization operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett161:7–14[CrossRef]
    [Google Scholar]
  21. Kapatral V., Minnich S. A.. 1995; Coordinate, temperature-sensitive regulation of three Yersinia enterocolitica flagellin genes. Mol Microbiol17:49–56[CrossRef]
    [Google Scholar]
  22. Kapatral V., Olson J. A., Pepe J. C., Miller V. L., Minnich S. A.. 1996; Temperature dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol19:1061–1071[CrossRef]
    [Google Scholar]
  23. Kapatral V., Anderson I., Ivanova N..22 other authors 2002; Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol184:2005–2018[CrossRef]
    [Google Scholar]
  24. Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C.. 2003; Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol48:1633–1645[CrossRef]
    [Google Scholar]
  25. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G.. 2002; LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol45:521–532[CrossRef]
    [Google Scholar]
  26. Liu X., Matsumura P.. 1994; The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol176:7345–7351
    [Google Scholar]
  27. Liu X., Matsumura P.. 1995; An alternative sigma factor controls transcription of flagellar class III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene164:81–84[CrossRef]
    [Google Scholar]
  28. Liu X., Matsumura P.. 1996; Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol21:613–620[CrossRef]
    [Google Scholar]
  29. Macnab R. M.. 1996; Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.123–145Edited by Neidhart F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. McDermott P. F., Ciacci-Woolwine F., Snipes J. A., Mizel S. B.. 2000; High-affinity interaction between Gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun68:5525–5529[CrossRef]
    [Google Scholar]
  31. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T.. 2002; Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol46:281–291[CrossRef]
    [Google Scholar]
  32. Overbeek R., Larsen N., Walunas T.. & 19 other authors. 2003; The ERGO genome analysis and discovery system. Nucleic Acid Res31:164–171[CrossRef]
    [Google Scholar]
  33. Parkhill J., Wren B. W., Thomson N. R.. & 32 other authors. 2001; Genome sequence of Yersinia pestis, the causative agent of plague. Nature413:523–527[CrossRef]
    [Google Scholar]
  34. Prüß B. M.. 2000; FlhD, a transcriptional regulator in bacteria. Rec Res Dev Microbiol4:31–42
    [Google Scholar]
  35. Prüß B. M., Matsumura P.. 1996; A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J Bacteriol178:668–674
    [Google Scholar]
  36. Prüß B. M., Matsumura P.. 1997; Cell cycle regulation of flagellar genes. J Bacteriol179:5602–5604
    [Google Scholar]
  37. Prüß B. M., Wolfe A. J.. 1994; Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol12:973–984[CrossRef]
    [Google Scholar]
  38. Prüß B. M., Markovic D., Matsumura P.. 1997; The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol179:3818–3821
    [Google Scholar]
  39. Prüß B. M., Liu X., Hendrickson H., Matsumura P.. 2001; FlhD/FlhC regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett197:91–97[CrossRef]
    [Google Scholar]
  40. Prüß B. M., Campbell J. W., Van Dyk T. K., Zhu C., Kogan Y., Matsumura P.. 2003; FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol185:534–543[CrossRef]
    [Google Scholar]
  41. Revell P. A., Miller V. A.. 2001; Yersinia virulence: more than a plasmid. FEMS Microbiol Lett205:159–164[CrossRef]
    [Google Scholar]
  42. Rimpilainen M., Forsberg A., Wolf-Watz H.. 1992; A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol174:3355–3363
    [Google Scholar]
  43. Schmiel D. H., Young G. M., Miller V. L.. 2000; The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol182:2314–2320[CrossRef]
    [Google Scholar]
  44. Shin S., Park C.. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol177:4696–4702
    [Google Scholar]
  45. Siblini L., Lafeuillade B., Ros A., Le Petit J. C., Pozzetto B.. 2002; Reduction of Yersinia enterocolitica load in deliberately inoculated blood: the effects of blood prestorage temperature and WBC filtration. Transfusion42:422–427[CrossRef]
    [Google Scholar]
  46. Suzuki I., Los D. A., Kanesaki Y., Mikami K., Murata N.. 2000; The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J19:1327–1334[CrossRef]
    [Google Scholar]
  47. Tusher V. G., Tibshirani R., Chu G.. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A98:5116–5121[CrossRef]
    [Google Scholar]
  48. Wei B. L., Brun-Zinkernagel A.-M., Simecka J. W., Babitzke P., Romeo T., Prüß B. M.. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol40:245–256[CrossRef]
    [Google Scholar]
  49. Young B. M., Young G. M.. 2002; YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol184:1324–1334[CrossRef]
    [Google Scholar]
  50. Young G. M., Schmiel D. H., Miller V. L.. 1999a; A new pathway for the secretion of the virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A96:6456–6461[CrossRef]
    [Google Scholar]
  51. Young G. M., Smith M., Minnich S. A., Miller V. L.. 1999b; The Yersinia enterocolitica motility master operon, flhDC, is required for flagellin production, swimming, and swarming motility. J Bacteriol181:2823–2833
    [Google Scholar]
  52. Young G. M., Badger J. L., Miller V. L.. 2000; Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun68:4323–4326[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26814-0
Loading
/content/journal/micro/10.1099/mic.0.26814-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error