1887

Abstract

This paper focuses on global gene regulation by FlhD/FlhC in enteric bacteria. Even though FlhD/FlhC can complement an mutant for motility, it is not known if the FlhD/FlhC complex has an effect on metabolism similar to . To study metabolic gene regulation, a partial 8081c microarray was constructed and the expression patterns of wild-type cells were compared to an mutant strain at 25 and 37 °C. The overlap between the and FlhD/FlhC regulated genes was 25 %. Genes that were regulated at least fivefold by FlhD/FlhC in are genes encoding urocanate hydratase (), imidazolone propionase (), carbamoylphosphate synthetase () and aspartate carbamoyltransferase (). These enzymes are part of a pathway that is involved in the degradation of -histidine to -glutamate and eventually leads into purine/pyrimidine biosynthesis via carbamoylphosphate and carbamoylaspartate. A number of other genes were regulated at a lower rate. In two additional experiments, the expression of wild-type cells grown at 4 or 25 °C was compared to the same strain grown at 37 °C. The expression of the flagella master operon was not affected by temperature, whereas the flagella-specific sigma factor was highly expressed at 25 °C and reduced at 4 and 37 °C. Several other flagella genes, all of which are under the control of FliA, exhibited a similar temperature profile. These data are consistent with the hypothesis that temperature regulation of flagella genes might be mediated by the flagella-specific sigma factor FliA and not the flagella master regulator FlhD/FlhC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26814-0
2004-07-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502289.html?itemId=/content/journal/micro/10.1099/mic.0.26814-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D. 2001; Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691 [CrossRef]
    [Google Scholar]
  2. Aldridge P., Hughes K. T. 2002; Regulation of flagellar assembly. Curr Opin Microbiol 2:160–165
    [Google Scholar]
  3. Barbosa T. M., Levy S. B. 2000; Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182:3467–3474 [CrossRef]
    [Google Scholar]
  4. Bartlett D. H., Frantz B. B., Matsumura P. 1988; Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 170:1575–1581
    [Google Scholar]
  5. Bleves S., Marenn M.-N., Detry G., Cornelis G. R. 2002; Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184:3214–3223 [CrossRef]
    [Google Scholar]
  6. Bochner B. R., Gadzinski P., Panomitros E. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255 [CrossRef]
    [Google Scholar]
  7. Bradley R. M., Gander R. M., Patel S. K., Kaplan H. S. 1997; Inhibitory effect of 0 degree C storage on the proliferation of Yersinia enterocolitica in donated blood. Transfusion 37:691–695 [CrossRef]
    [Google Scholar]
  8. Chilcott G. S., Hughes K. T. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708 [CrossRef]
    [Google Scholar]
  9. Chuang S. E., Daniels D. L., Blattner F. R. 1993; Global expression in Escherichia coli. J Bacteriol 175:2026–2036
    [Google Scholar]
  10. Cornelis G. R. 2000; Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 29:681–693
    [Google Scholar]
  11. Cornelis G. R. 2002; Yersinia Type III secretion: send in the effectors. J Cell Biol 158:401–408 [CrossRef]
    [Google Scholar]
  12. de Mendoza D., Grau R., Cronan J. E. J. 1993; Biosynthesis and function of membrane lipids. In Bacillus subtilis and Other Gram Positive Bacteria: Physiology, Biochemistry and Molecular Biology pp. 411–425Edited by Losick R.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Deng W., Burland V., Plunkett G. III & 18 other authors; 2002; Genome sequence of Yersinia pestis. KIM. J Bacteriol 184:4601–4611 [CrossRef]
    [Google Scholar]
  14. Fauconnier A., Allaoui A., Campos A., Van Elsen A., Cornelis G. R., Bollen A. 1997; Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus inYersinia enterocolitica. Microbiology 143:3461–3471 [CrossRef]
    [Google Scholar]
  15. Feng J., Atkinson M. R., McCleary W., Stock F. B., Wanner B. L., Ninfa A. J. 1992; Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol 174:6061–6070
    [Google Scholar]
  16. Fessenmaier M., Frank R., Retey J., Schubert C. 1991; Cloning and sequencing the urocanase (hutU) from Pseudomonas putida. FEBS Lett 286:55–57 [CrossRef]
    [Google Scholar]
  17. Francez-Charlot A., Laugel B., Van Germert A., Dubarry N., Wiorowski F., Castanie-Cornet M.-P., Gutierrez C., Cam K. 2003; RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832
    [Google Scholar]
  18. Givskov M., Eberl L., Christiansen M., Benedik J., Molin S. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon FlhD. Mol Microbiol 15:445–454 [CrossRef]
    [Google Scholar]
  19. Iriarte M., Stainer I., Mikulskis I., Cornelis G. R. 1995; The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 177:2299–2304
    [Google Scholar]
  20. Kannan K., Janiyani K. L., Shivaji S., Ray M. K. 1998; Histidine utilization operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 161:7–14 [CrossRef]
    [Google Scholar]
  21. Kapatral V., Minnich S. A. 1995; Coordinate, temperature-sensitive regulation of three Yersinia enterocolitica flagellin genes. Mol Microbiol 17:49–56 [CrossRef]
    [Google Scholar]
  22. Kapatral V., Olson J. A., Pepe J. C., Miller V. L., Minnich S. A. 1996; Temperature dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol 19:1061–1071 [CrossRef]
    [Google Scholar]
  23. Kapatral V., Anderson I., Ivanova N.22 other authors 2002; Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184:2005–2018 [CrossRef]
    [Google Scholar]
  24. Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C. 2003; Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48:1633–1645 [CrossRef]
    [Google Scholar]
  25. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G. 2002; LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532 [CrossRef]
    [Google Scholar]
  26. Liu X., Matsumura P. 1994; The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351
    [Google Scholar]
  27. Liu X., Matsumura P. 1995; An alternative sigma factor controls transcription of flagellar class III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164:81–84 [CrossRef]
    [Google Scholar]
  28. Liu X., Matsumura P. 1996; Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol 21:613–620 [CrossRef]
    [Google Scholar]
  29. Macnab R. M. 1996; Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 123–145Edited by Neidhart F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. McDermott P. F., Ciacci-Woolwine F., Snipes J. A., Mizel S. B. 2000; High-affinity interaction between Gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun 68:5525–5529 [CrossRef]
    [Google Scholar]
  31. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T. 2002; Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291 [CrossRef]
    [Google Scholar]
  32. Overbeek R., Larsen N., Walunas T. & 19 other authors; 2003; The ERGO genome analysis and discovery system. Nucleic Acid Res 31:164–171 [CrossRef]
    [Google Scholar]
  33. Parkhill J., Wren B. W., Thomson N. R. & 32 other authors; 2001; Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527 [CrossRef]
    [Google Scholar]
  34. Prüß B. M. 2000; FlhD, a transcriptional regulator in bacteria. Rec Res Dev Microbiol 4:31–42
    [Google Scholar]
  35. Prüß B. M., Matsumura P. 1996; A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J Bacteriol 178:668–674
    [Google Scholar]
  36. Prüß B. M., Matsumura P. 1997; Cell cycle regulation of flagellar genes. J Bacteriol 179:5602–5604
    [Google Scholar]
  37. Prüß B. M., Wolfe A. J. 1994; Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973–984 [CrossRef]
    [Google Scholar]
  38. Prüß B. M., Markovic D., Matsumura P. 1997; The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol 179:3818–3821
    [Google Scholar]
  39. Prüß B. M., Liu X., Hendrickson H., Matsumura P. 2001; FlhD/FlhC regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197:91–97 [CrossRef]
    [Google Scholar]
  40. Prüß B. M., Campbell J. W., Van Dyk T. K., Zhu C., Kogan Y., Matsumura P. 2003; FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543 [CrossRef]
    [Google Scholar]
  41. Revell P. A., Miller V. A. 2001; Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205:159–164 [CrossRef]
    [Google Scholar]
  42. Rimpilainen M., Forsberg A., Wolf-Watz H. 1992; A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol 174:3355–3363
    [Google Scholar]
  43. Schmiel D. H., Young G. M., Miller V. L. 2000; The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182:2314–2320 [CrossRef]
    [Google Scholar]
  44. Shin S., Park C. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702
    [Google Scholar]
  45. Siblini L., Lafeuillade B., Ros A., Le Petit J. C., Pozzetto B. 2002; Reduction of Yersinia enterocolitica load in deliberately inoculated blood: the effects of blood prestorage temperature and WBC filtration. Transfusion 42:422–427 [CrossRef]
    [Google Scholar]
  46. Suzuki I., Los D. A., Kanesaki Y., Mikami K., Murata N. 2000; The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334 [CrossRef]
    [Google Scholar]
  47. Tusher V. G., Tibshirani R., Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121 [CrossRef]
    [Google Scholar]
  48. Wei B. L., Brun-Zinkernagel A.-M., Simecka J. W., Babitzke P., Romeo T., Prüß B. M. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256 [CrossRef]
    [Google Scholar]
  49. Young B. M., Young G. M. 2002; YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol 184:1324–1334 [CrossRef]
    [Google Scholar]
  50. Young G. M., Schmiel D. H., Miller V. L. 1999a; A new pathway for the secretion of the virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96:6456–6461 [CrossRef]
    [Google Scholar]
  51. Young G. M., Smith M., Minnich S. A., Miller V. L. 1999b; The Yersinia enterocolitica motility master operon, flhDC, is required for flagellin production, swimming, and swarming motility. J Bacteriol 181:2823–2833
    [Google Scholar]
  52. Young G. M., Badger J. L., Miller V. L. 2000; Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68:4323–4326 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26814-0
Loading
/content/journal/micro/10.1099/mic.0.26814-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error