1887

Abstract

This study is focused on the involvement of the unusual nucleotide (p)ppGpp during the morphological and physiological differentiation of . In particular, the functional and structural elements of two genes encoding the proteins RelA and Rsh were identified. The gene encodes an 843 aa protein (RelA), while the gene encodes a 738 aa protein (Rsh). The and genes were disrupted by the insertion of a hygromycin resistance gene and an apramycin resistance gene, respectively. The synthesis of ppGpp in the gene-disrupted mutant was completely eliminated under conditions of starvation for amino acids, whereas synthesis persisted, but was greatly reduced in the gene-disrupted mutant. The gene-disrupted mutant had a bald appearance on agar plate cultures and retarded growth in submerged culture, while the -disrupted mutant was unchanged in growth characteristics relative to the wild-type culture. The production of both clavulanic acid and cephamycin C were completely abolished in the -disrupted mutant. Thus, it is concluded that the gene rather than is essential for morphological and physiological differentiation in and that RelA primarily governs the stringent response of to starvation for amino acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26811-0
2004-05-01
2024-11-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501485.html?itemId=/content/journal/micro/10.1099/mic.0.26811-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tools. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Aravind L., Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolase. Trends Biochem Sci 23:469–472 [CrossRef]
    [Google Scholar]
  3. Barker M. M., Gaal T., Gourse R. L. 2001; Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305:673–688 [CrossRef]
    [Google Scholar]
  4. Bascaran V., Sanchez L., Hardisson C., Brana A. F. 1991; Stringent response and initiation of secondary metabolism in Streptomyces clavuligerus. J Gen Microbiol 137:1625–1634 [CrossRef]
    [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  6. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  7. Brown L., Gentry D., Elliott T., Cashel M. 2002; DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184:4455–4465 [CrossRef]
    [Google Scholar]
  8. Cashel M., Gentry D. R., Hernandez V. J., Vinella D.others 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1458–1496 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Chakraburtty R., Bibb M. J. 1997; The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861
    [Google Scholar]
  10. Chakraburtty R., White J., Takano E., Bibb M. J. 1996; Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) ofStreptomyces coelicolor A3(2). Mol Microbiol 19:357–368 [CrossRef]
    [Google Scholar]
  11. Chater K. F., Bibb M. J. 1996; Regulation of bacterial antibiotic production. Bio/Technology 7:70–105
    [Google Scholar]
  12. Chatterji D., Fujita N., Ishihama A. 1998; The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 3:279–287 [CrossRef]
    [Google Scholar]
  13. Choy H. E. 2000; The study of guanosine 5′-diphosphate 3′-diphosphate mediated transcription regulation in vitro using a coupled transcription-translation system. J Biol Chem 275:6783–6789 [CrossRef]
    [Google Scholar]
  14. Delden C. V., Compte R., Bally M. 2001; Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J Bacteriol 183:5376–5384 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. 1993; phylip, version 3.5. University of Washington; Seattle, USA:
  16. Foulstone M., Reading C. 1982; Assay of amoxycillin and clavulanic acid, the components of Augmentin, in biological fluids with high performance liquid chromatography. Antimicrob Agents Chemother 22:753–762 [CrossRef]
    [Google Scholar]
  17. Garza A. G., Harris B. Z., Greenberg B. M., Singer M. 2000; Control of asgE expression during growth and development of Myxococcus xanthus. J Bacteriol 182:6622–6629 [CrossRef]
    [Google Scholar]
  18. Gentry D. R., Cashel M. 1996; Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol 19:1373–1384 [CrossRef]
    [Google Scholar]
  19. Hammer B. K., Swanson M. S. 1999; Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33:721–731 [CrossRef]
    [Google Scholar]
  20. Haseltine W. A., Block R. 1973; Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A 70:1564–1568 [CrossRef]
    [Google Scholar]
  21. Higgins D. G., Bleasby A. T., Fuchs R. 1992; clustal w: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  22. Hoyt S., Jones G. H. 1999; relA is required for actinomycin production inStreptomyces antibioticus. J Bacteriol 181:3824–3829
    [Google Scholar]
  23. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:251–253 [CrossRef]
    [Google Scholar]
  24. Jones C., Thompson A., England R. 1996; Guanosine 5′-diphosphate 3′-diphosphate(ppGpp), guanosine 5′-diphosphate 3′-monophosphate(ppGp) and antibiotic production in Streptomyces clavuligerus. Microbiology 142:1789–1795 [CrossRef]
    [Google Scholar]
  25. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  26. Kuhar I., van Putten J. P., Zgur-Bertok D., Gaastra W., Jordi B. J. 2001; Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol Microbiol 41:207–216 [CrossRef]
    [Google Scholar]
  27. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  28. Metzger S., Sarubbi E., Glaser G., Cashel M. 1989; Protein sequences encoded by the relA and spoT genes of Escherichia coli are interrelated.. J Biol Chem 264:9122–9125
    [Google Scholar]
  29. Mittenhuber G. 2001; Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J Mol Microbiol Biotechnol 3:585–600
    [Google Scholar]
  30. Ochi K. 1986; Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol 132:2621–2631
    [Google Scholar]
  31. Ochi K. 1987; Changes in nucleotide pools during sporulation of Streptomyces griseus in submerged culture. J Gen Microbiol 133:2787–2795
    [Google Scholar]
  32. Okamoto S., Ochi K. 1998; An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 30:107–119 [CrossRef]
    [Google Scholar]
  33. Paradkar A. S., Jensen S. E. 1995; Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J Bacteriol 177:1307–1314
    [Google Scholar]
  34. Primm T. P., Andersen S. J., Mizrahi V., Avarbock D., Rubin H., Barry C. E. III: 2000; The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898 [CrossRef]
    [Google Scholar]
  35. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  36. Strauch E., Takano E., Baylis H. A., Bibb M. J. 1991; The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5:289–298 [CrossRef]
    [Google Scholar]
  37. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 128:115–121
    [Google Scholar]
  38. Sun J., Hesketh A., Bibb M. J. 2001; Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). . J Bacteriol 183:3488–3498 [CrossRef]
    [Google Scholar]
  39. Wahl G. M., Lewis K. A., Ruiz J. C., Rothenberg B., Zhao J., Evans G. A. 1987; Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. Proc Natl Acad Sci U S A 84:2160–2164 [CrossRef]
    [Google Scholar]
  40. Wehmeier U. F. 1995; New multifunctional Escherichia coli-Streptomyces shuttle vectors allowing blue-white screening on X-Gal plates. Gene 165:149–150 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26811-0
Loading
/content/journal/micro/10.1099/mic.0.26811-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error