1887

Abstract

The authors have previously reported on molecular responses of to bacterial antifungal metabolites, e.g. bafilomycins and the related concanamycins. These compounds are known inhibitors of V-ATPases and cause dramatic effects on mycelial growth and morphology. In , studies have shown that disruption of the gene encoding subunit A of the V-ATPase results in morphological changes and reduced growth similar to those observed after addition of concanamycin. This phenotype, and the fact that this mutation confers resistance to concanamycin, suggests that V-ATPase is the main (or only) target for the antibiotics. However, growth inhibition and morphology changes in, for example, and are more severe, and thus other targets are possible. In this study, the gene of , encoding the subunit A of V-ATPase, was disrupted by homologous recombination. The resulting mutant strain displayed extremely slow growth and failed to produce asexual spores. Furthermore, an altered morphology similar to that caused by addition of V-ATPase inhibitors, i.e. bafilomycin or concanamycin, was observed, indicating that V-ATPase is the main target for the antibiotics also in . The mutant was not viable at pH values above 7 and was highly sensitive to high Zn concentrations, in agreement with previous results from studies of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26807-0
2004-03-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500743.html?itemId=/content/journal/micro/10.1099/mic.0.26807-0&mimeType=html&fmt=ahah

References

  1. Bachhawat, A. K., Manolson, M. F., Murdock, D. G., Garman, J. D. & Jones, E. W. ( 1993; ). The Vph2-gene encodes a 25 kDa protein required for activity of the yeast vacuolar H+-ATPase. Yeast 9, 175–184.[CrossRef]
    [Google Scholar]
  2. Bowman, E. J., Siebers, A. & Altendorf, K. ( 1988; ). Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85, 7972–7976.[CrossRef]
    [Google Scholar]
  3. Bowman, E. J., Kendle, R. & Bowman, B. J. ( 2000; ). Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 275, 167–176.[CrossRef]
    [Google Scholar]
  4. Dröse, S., Bindseil, K. U., Bowman, E. J., Siebers, A., Zeeck, A. & Altendorf, K. ( 1993; ). Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32, 3902–3906.[CrossRef]
    [Google Scholar]
  5. Eckert, S. E., Kubler, E., Hoffmann, B. & Braus, G. H. ( 2000; ). The tryptophan synthase-encoding trpB gene of Aspergillus nidulans is regulated by the cross-pathway control system. Mol Gen Genet 263, 867–876.[CrossRef]
    [Google Scholar]
  6. Eide, D. J., Bridgham, J. T., Zhao, Z. & Mattoon, J. R. ( 1993; ). The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241, 447–456.
    [Google Scholar]
  7. Fincham, J. R. ( 1989; ). Transformation in fungi. Microbiol Rev 53, 148–170.
    [Google Scholar]
  8. Forgac, M. ( 1989; ). Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69, 765–796.
    [Google Scholar]
  9. Frändberg, E. & Schnürer, J. ( 1998; ). Antifungal activity of chitinolytic bacteria isolated from airtight stored cereal grain. Can J Microbiol 44, 121–127.[CrossRef]
    [Google Scholar]
  10. Frändberg, E., Petersson, C., Lundgren, L. N. & Schnürer, J. ( 2000; ). Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can J Microbiol 46, 753–758.[CrossRef]
    [Google Scholar]
  11. Kaminskyj, S. G. W. ( 2001; ). Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans. Fungal Genet Newsl 48, 25–31.
    [Google Scholar]
  12. Klionsky, D. J., Herman, P. K. & Emr, S. D. ( 1990; ). The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54, 266–292.
    [Google Scholar]
  13. Melin, P., Schnürer, J. & Wagner, E. G. H. ( 1999; ). Changes in Aspergillus nidulans gene expression induced by bafilomycin, a Streptomyces-produced antibiotic. Microbiology 145, 1115–1122.[CrossRef]
    [Google Scholar]
  14. Melin, P., Schnürer, J. & Wagner, E. G. H. ( 2002; ). Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genom 267, 695–702.[CrossRef]
    [Google Scholar]
  15. Melin, P., Schnürer, J. & Wagner, E. G. H. ( 2003; ). Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans. Fungal Genet Biol 40, 234–241.[CrossRef]
    [Google Scholar]
  16. Pontecorvo, G., Roper, J. A. L. M. H., MacDonald, K. D. & Bufton, A. W. J. ( 1953; ). The genetics of Aspergillus nidulans. Adv Genet 5, 141–237.
    [Google Scholar]
  17. Ramsay, L. M. & Gadd, G. M. ( 1997; ). Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Let 152, 293–298.[CrossRef]
    [Google Scholar]
  18. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Segurado, M., Lopez-Aragon, R., Calera, J. A., Fernandez-Abalos, J. M. & Leal, F. ( 1999; ). Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp. Infect Immun 67, 2377–2382.
    [Google Scholar]
  20. Talbot, N. J. ( 2001; ). Nucleic acid isolation and analysis. In Molecular and Cellular Biology of Filamentous Fungi, pp. 23–26. Edited by N. J. Talbot. Oxford: Oxford University Press.
  21. Weber, R. W. S. ( 2002; ). Vacuoles and the fungal lifestyle. Mycologist 16, 10–20.
    [Google Scholar]
  22. Werner, G. & Hagenmaier, H. ( 1984; ). Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics: production, isolation, chemical structure and biological activity. J Antibiot 37, 110–117.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26807-0
Loading
/content/journal/micro/10.1099/mic.0.26807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error