1887

Abstract

The gene was disrupted in order to investigate the role of Not4p in growth, morphogenesis and pathogenicity. Heterozygote (/), null (/) and reconstructed heterozygote ([]/) strains of , as well as CAF2-1, the parental strain, were grown under conditions that promote hyphal formation. When cultured in liquid medium 199 the heterozygote, reconstructed and wild-type strains began the yeast-to-hyphal transition within 3 h and continued hyphal growth for the duration of experiments. The null mutant also began hyphal growth within 3–5 h but hyphae tended to be shorter and distorted. Subsequently, hyphal growth was arrested and growth returned predominantly to the yeast form. Similar differences were observed when strains were grown on solid Spider medium and medium 199. The parental, heterozygote and reconstructed strains formed normal filamentous networks emanating from colonies. In contrast, the null mutant failed to form hyphae on all solid media tested. The ability of the null strain to form biofilms was also investigated, and it was observed that biofilm development does not readily occur for this strain. Virulence of each strain was examined utilizing the mouse model of systemic candidiasis. Mice infected with CAF2-1 succumbed to infection within 3–7 days. All mice infected with the null strain survived for the duration of experiments, while the heterozygote and reconstructed heterozygote strains showed an intermediate level of virulence. These findings suggest that may play a role in affecting strain pathogenicity, possibly by regulating expression of certain genes that effect cellular morphogenesis and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26792-0
2004-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500229.html?itemId=/content/journal/micro/10.1099/mic.0.26792-0&mimeType=html&fmt=ahah

References

  1. Albert, T. K., Lemaire, M., van Berkum, N. L., Gentz, R., Collart, M. A. & Timmers, H. T. ( 2000; ). Isolation and characterization of human orthologs of yeast CCR4–NOT complex subunits. Nucleic Acids Res 28, 809–817.[CrossRef]
    [Google Scholar]
  2. Albert, T. K., Hanzawa, H., Legtenberg, Y. I., de Ruwe, M. J., van den Heuvel, F. A., Collart, M. A., Boelens, R. & Timmers, H. T. ( 2002; ). Identification of a ubiquitin-protein ligase subunit within the CCR4–NOT transcription repressor complex. EMBO J 21, 355–364.[CrossRef]
    [Google Scholar]
  3. Badarinarayana, V., Chiang, Y. C. & Denis, C. L. ( 2000; ). Functional interaction of CCR4–NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast. Genetics 155, 1045–1054.
    [Google Scholar]
  4. Bai, Y., Salvadore, C., Chiang, Y. C., Collart, M. A., Liu, H. Y. & Denis, C. L. ( 1999; ). The CCR4 and CAF1 proteins of the CCR4–NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19, 6642–6651.
    [Google Scholar]
  5. Baillie, G. S. & Douglas, L. J. ( 1999; ). Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48, 671–679.[CrossRef]
    [Google Scholar]
  6. Bockmuhl, D. P. & Ernst, J. F. ( 2001; ). A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157, 1523–1530.
    [Google Scholar]
  7. Boeke, J. D., LaCroute, F. & Fink, G. R. ( 1984; ). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197, 345–346.[CrossRef]
    [Google Scholar]
  8. Borden, K. L. B. ( 2000; ). RING domains: master builders of molecular scaffolds. J Mol Biol 295, 1103–1112.[CrossRef]
    [Google Scholar]
  9. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
    [Google Scholar]
  10. Cade, R. M. & Errede, B. ( 1994; ). MOT2 encodes a negative regulator of gene expression that affects basal expression of pheromone-responsive genes in Saccharomyces cerevisiae. Mol Cell Biol 14, 3139–3149.
    [Google Scholar]
  11. Calderone, R. A. ( 2002; ). Candida and Candidiasis. Washington, DC: American Society for Microbiology.
  12. Calera, J. A., Zhao, X. J., De Bernardis, F., Sheridan, M. & Calderone, R. ( 1999; ). Avirulence of Candida albicans CaHK1 mutants in a murine model of hematogenously disseminated candidiasis. Infect Immun 67, 4280–4284.
    [Google Scholar]
  13. Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T. & Ghannoum, M. A. ( 2001; ). Biofilm formation by the fungal pathogen Candida albicans: development architecture, and drug resistance. J Bacteriol 183, 5385–5394.[CrossRef]
    [Google Scholar]
  14. Chen, J., Chiang, Y. C. & Denis, C. L. ( 2002; ). CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21, 1414–1426.[CrossRef]
    [Google Scholar]
  15. Cheng, S., Clancy, C. J., Checkley, M. A., Handfield, M., Hillman, J. D., Progulske-Fox, A., Lewin, A. S., Fidel, P. L. & Nguyen, M. H. ( 2003; ). Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol 48, 1275–1288.[CrossRef]
    [Google Scholar]
  16. Collart, M. A. ( 2003; ). Global control of gene expression in yeast by the Ccr–Not complex. Gene 313, 1–16.[CrossRef]
    [Google Scholar]
  17. Collart, M. A. & Struhl, K. ( 1994; ). NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8, 525–537.[CrossRef]
    [Google Scholar]
  18. Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. M. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713–2721.
    [Google Scholar]
  19. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  20. Gietz, R. D. & Woods, R. A. ( 1998; ). Transformation of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. Methods Microbiol 26, 53–66.
    [Google Scholar]
  21. Giusani, A. D., Vinces, M. & Kumamoto, C. A. ( 2002; ). Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160, 1749–1753.
    [Google Scholar]
  22. Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T. & Boelens, R. ( 2001; ). The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. J Biol Chem 276, 10185–10190.[CrossRef]
    [Google Scholar]
  23. Hwang, C.-S., Oh, J.-H., Huh, W.-K., Yim, H.-S. & Kang, S.-O. ( 2003; ). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 47, 1029–1043.[CrossRef]
    [Google Scholar]
  24. Inglis, D. O. & Johnson, A. D. ( 2002; ). Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans. Mol Cell Biol 22, 8669–8680.[CrossRef]
    [Google Scholar]
  25. Irie, K., Yamaguchi, K., Kawase, K. & Matsumoto, K. ( 1994; ). The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes. Mol Cell Biol 14, 3150–3157.
    [Google Scholar]
  26. Kadosh, D. & Johnson, A. D. ( 2001; ). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21, 2496–2505.[CrossRef]
    [Google Scholar]
  27. Lane, S., Birse, C., Zhou, S., Matson, R. & Liu, H. ( 2001; ). DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276, 48988–48996.[CrossRef]
    [Google Scholar]
  28. Lemaire, M. & Collart, M. A. ( 2000; ). The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator CCR4–NOT complex and physically interacts with the Not5 subunit. J Biol Chem 275, 26925–26934.
    [Google Scholar]
  29. Lewis, R. E., Lo, H.-J., Raad, I. I. & Kontoyiannis, D. P. ( 2002; ). Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 46, 1153–1155.[CrossRef]
    [Google Scholar]
  30. Liu, H., Kohler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  31. Liu, H. Y., Badarinarayana, V., Audino, D. C., Rappsilber, J., Mann, M. & Denis, C. L. ( 1998; ). The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J 17, 1096–1106.[CrossRef]
    [Google Scholar]
  32. Liu, H. Y., Chiang, Y. C., Pan, J. & 7 other authors ( 2001; ). Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4–NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276, 7541–7548.[CrossRef]
    [Google Scholar]
  33. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.[CrossRef]
    [Google Scholar]
  34. Maillet, L. & Collart, M. A. ( 2002; ). Interaction between NotIp, a component of the Ccr4–Not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J Biol Chem 277, 2835–2842.[CrossRef]
    [Google Scholar]
  35. Maillet, L., Tu, C., Hong, Y. K., Shuster, E. O. & Collart, M. A. ( 2000; ). The essential function of Not1 lies within the Ccr4–Not complex. J Mol Biol 303, 131–143.[CrossRef]
    [Google Scholar]
  36. Murad, A. M. A., Leng, P., Straffon, M. & 11 other authors ( 2001a; ). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20, 4742–4752.[CrossRef]
    [Google Scholar]
  37. Murad, A. M. A., d'Enfert, C., Gaillardin, C. & 7 other authors ( 2001b; ). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42, 981–993.[CrossRef]
    [Google Scholar]
  38. Oberholzer, U. & Collart, M. A. ( 1998; ). Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207, 61–69.[CrossRef]
    [Google Scholar]
  39. Ramage, G., Vandewalle, K., López-Ribot, J. L. & Wickes, B. L. ( 2002; ). The filamentous pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214, 95–100.[CrossRef]
    [Google Scholar]
  40. Rocha, C. R., Schroppel, K., Harcus, D., Marcil, A., Dignard, D., Taylor, B. N., Thomas, D. Y., Whiteway, M. & Leberer, E. ( 2001; ). Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12, 3631–3643.[CrossRef]
    [Google Scholar]
  41. Rottman, M., Dieter, S., Brunner, H. & Rupp, S. ( 2003; ). A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Mol Microbiol 47, 943–959.[CrossRef]
    [Google Scholar]
  42. Russell, P., Benson, J. D. & Denis, C. L. ( 2002; ). Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4–NOT complex. J Mol Biol 322, 27–39.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Schweizer, A., Rupp, S., Taylor, B. N., Rollinghoff, M. & Schroppel, K. ( 2000; ). The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38, 435–445.[CrossRef]
    [Google Scholar]
  45. Shin, J. H., Kee, S. J., Shin, M. G., Kim, S. H., Shin, D. H., Lee, S. K., Suh, S. P. & Ryang, D. W. ( 2002; ). Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloods. J Clin Microbiol 40, 1244–1248.[CrossRef]
    [Google Scholar]
  46. Stoldt, V. R., Sonneborn, A., Leuker, C. E. & Ernst, J. F. ( 1997; ). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16, 1982–1991.[CrossRef]
    [Google Scholar]
  47. Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D. & Parker, R. ( 2002; ). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21, 1427–1436.[CrossRef]
    [Google Scholar]
  48. Uhl, M. A., Biery, M., Craig, N. & Johnson, A. D. ( 2003; ). Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 22, 2668–2678.[CrossRef]
    [Google Scholar]
  49. Zhao, X. J., Calderone, R. A., Krueger, K. E., Choi, G. & Cihlar, R. L. ( 2001; ). Isolation and characterization of the Candida albicans MOT2 gene. Med Mycol 39, 81–86.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26792-0
Loading
/content/journal/micro/10.1099/mic.0.26792-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error