1887

Abstract

cells move by gliding, and form multicellular fruiting bodies under conditions of starvation. The authors cloned a gene, designated (for receptor for polysaccharide production), which encodes a methyl-accepting protein homologous to the chemotaxis transducers in eubacteria. The gene was co-transcribed with , a gene homologous to various multidrug transporter genes. The or single mutants showed almost identical phenotypes to the wild-type strain; however, the double mutant exhibited reduced colony expansion, cell–cell agglutination and cellular reversal frequency. The double-mutant cells also showed less binding to Congo red, which mainly binds to fibril polysaccharide, than wild-type cells. Analysis of total polysaccharide in stationary-phase cells demonstrated that in the double mutant, polysaccharide levels were decreased by about 30 % as compared with the wild-type strain. These results indicated that RppA and MmrA play a role in the biogenesis and/or assembly of polysaccharide, and the phenotypes of the double mutant may be due to the reduction in fibril polysaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26786-0
2004-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500631.html?itemId=/content/journal/micro/10.1099/mic.0.26786-0&mimeType=html&fmt=ahah

References

  1. Alting-Mees M. A., Short J. M. 1989; pBluescript II: gene mapping vectors. Nucleic Acids Res 17:9494 [CrossRef]
    [Google Scholar]
  2. Arnold J. W., Shimkets L. J. 1988; Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170:5771–5777
    [Google Scholar]
  3. Behmlander R. M., Dworkin M. 1991; Extracellular fibril and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol 173:7810–7821
    [Google Scholar]
  4. Behmlander R. M., Dworkin M. 1994; Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176:6295–6303
    [Google Scholar]
  5. Bellenger K., Ma X., Shi W., Yang Z. 2002; A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J Bacteriol 184:5654–5660 [CrossRef]
    [Google Scholar]
  6. Blackhart B. D., Zusman D. R. 1985; “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci U S A 82:8767–8770 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Campos J. M., Geisselesoder J., Zusman D. R. 1978; Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–178 [CrossRef]
    [Google Scholar]
  9. D'Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C. 2002; Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481–6489 [CrossRef]
    [Google Scholar]
  10. Darzins A. 1994; Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11:137–153 [CrossRef]
    [Google Scholar]
  11. Desomer J., Vereecke D., Crespi M., Van Montagu M. 1992; The plasmid-encoded chloramphenicol-resistance protein of Rhodococcus fascians is homologous to the transmembrane tetracycline efflux proteins. Mol Microbiol 6:2377–2385 [CrossRef]
    [Google Scholar]
  12. Dworkin M. 1963; Nutritional regulation of morphogenesis in Myxococcus xanthus. J Bacteriol 86:67–72
    [Google Scholar]
  13. Furuichi T., Inouye M., Inouye S. 1985; Novel one-step cloning vector with a transposable element: application to the Myxococcus xanthus genome. J Bacteriol 164:270–275
    [Google Scholar]
  14. Grimm A. C., Harwood C. S. 1999; NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316
    [Google Scholar]
  15. Guvener Z. T., McCarter L. L. 2003; Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J Bacteriol 185:5431–5441 [CrossRef]
    [Google Scholar]
  16. Hagen C. D., Bretscher P. A., Kaiser D. 1979; Synergism between morphogenic mutants of Myxococcus xanthus. Dev Biol 64:284–296
    [Google Scholar]
  17. Hartzell P. L., Youderian P. 1995; Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol 164:309–323 [CrossRef]
    [Google Scholar]
  18. Harwood C. S., Nichols N. N., Kim M.-K., Ditty J. L., Parales R. E. 1994; Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydrobenzoate. J Bacteriol 176:6479–6488
    [Google Scholar]
  19. Hodgkin J., Kaiser D. 1977; Cell-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74:2938–2942 [CrossRef]
    [Google Scholar]
  20. Hodgkin J., Kaiser D. 1979a; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171:167–176 [CrossRef]
    [Google Scholar]
  21. Hodgkin J., Kaiser D. 1979b; Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171:177–191 [CrossRef]
    [Google Scholar]
  22. Kaiser D. 2000; Bacterial motility: how do pili pull?. Curr Biol 10:R777–R780 [CrossRef]
    [Google Scholar]
  23. Kearns D. B., Campbell B. D., Shimkets L. J. 2000; Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. Proc Natl Acad Sci U S A 97:11505–11510 [CrossRef]
    [Google Scholar]
  24. Kearns D. B., Bonner P. J., Smith D. R., Shimkets L. J. 2002; An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184:1678–1684 [CrossRef]
    [Google Scholar]
  25. Kim S.-H., Ramaswamy S., Downard J. 1999; Regulated exopolysaccharide production in Myxococcus xanthus. J Bacteriol 181:1496–1507
    [Google Scholar]
  26. Kimsey H. H., Kaiser D. 1992; The orotidine-5′-monophosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase gene family. J Biol Chem 267:819–824
    [Google Scholar]
  27. Kimura Y., Nakano H., Terasaka H., Takegawa K. 2001; Myxococcus xanthus mokA encodes a histidine kinase-response regulator hybrid sensor required for development and osmotic tolerance. J Bacteriol 183:1140–1146 [CrossRef]
    [Google Scholar]
  28. Kirby J. R., Zusman D. R. 2003; Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci U S A 100:2008–2013 [CrossRef]
    [Google Scholar]
  29. Le Moual H., Koshland D. E., Jr. 1996; Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261:568–585 [CrossRef]
    [Google Scholar]
  30. Lee M., Shimkets L. 1994; Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants. J Bacteriol 176:2200–2209
    [Google Scholar]
  31. Li Y., Sun H., Ma X., Lu A., Lux R., Zusman D. R., Shi W. 2003; Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100:5443–5448 [CrossRef]
    [Google Scholar]
  32. McBride N. J., Weinberg R. A., Zusman D. R. 1989; “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A 86:424–428 [CrossRef]
    [Google Scholar]
  33. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  34. Plamann L., Kuspa A., Kaiser D. 1992; The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 174:3311–3318
    [Google Scholar]
  35. Ramaswamy S., Dworkin M., Downard J. 1997; Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179:2863–2871
    [Google Scholar]
  36. Rouch D. A., Cram D. S., DiBerardino D., Littlejohn T. G., Skurray R. A. 1990; Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4:2051–2062 [CrossRef]
    [Google Scholar]
  37. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. 1998; Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650 [CrossRef]
    [Google Scholar]
  38. Seidel R., Scharf B., Gautel M., Kleine K., Oesterhelt D., Engelhard M. 1995; The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A 92:3036–3040 [CrossRef]
    [Google Scholar]
  39. Shi W., Zusman D. R. 1993; The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90:3378–3382 [CrossRef]
    [Google Scholar]
  40. Shi W., Zusman D. R. 1994; Sensor/response in Myxococcus xanthus to attractants and repellents requires thefrz signal transduction system. Res Microbiol 145:431–435 [CrossRef]
    [Google Scholar]
  41. Shi W., Yang Z., Sun H., Lancero H., Tong L. 2000; Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol Lett 192:211–215 [CrossRef]
    [Google Scholar]
  42. Silakowski B., Kunze B., Nordsiek G., Blöcker H., Höfle G., Müller R. 2000; The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 267:6476–6485 [CrossRef]
    [Google Scholar]
  43. Spiers A. J., Bohannon J., Gehrig S. M., Rainey P. B. 2003; Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50:15–27 [CrossRef]
    [Google Scholar]
  44. Spormann A. M. 1999; Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641
    [Google Scholar]
  45. Spormann A. M., Kaiser D. 1999; Gliding mutants of Myxococcus xanthus with high reversal frequency and small displacements. J Bacteriol 181:2593–2601
    [Google Scholar]
  46. Ward M. J., Zusman D. R. 1997; Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 24:885–893 [CrossRef]
    [Google Scholar]
  47. Ward M. J., Mok K. C., Astling D. P., Lew H., Zusman D. R. 1998; An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J Bacteriol 180:5697–5703
    [Google Scholar]
  48. Wolgemuth C., Hoiczyk E., Kaiser D., Oster G. 2002; How myxobacteria glide. Curr Biol 12:369–377 [CrossRef]
    [Google Scholar]
  49. Wu S. S., Kaiser D. 1995; Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547–558 [CrossRef]
    [Google Scholar]
  50. Wu S. S., Wu J., Cheng Y. L., Kaiser D. 1998; The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 29:1249–1261 [CrossRef]
    [Google Scholar]
  51. Yamaguchi A., Someya Y., Sawai T. 1992; Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. J Biol Chem 267:19155–19162
    [Google Scholar]
  52. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W. 1998; A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130 [CrossRef]
    [Google Scholar]
  53. Yang Z., Ma X., Tong L., Kaplan H. B., Shimkets L. J., Shi W. 2000; Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182:5793–5798 [CrossRef]
    [Google Scholar]
  54. Youderian P., Burke N., White D. J., Hartzell P. L. 2003; Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49:555–570 [CrossRef]
    [Google Scholar]
  55. Zhang Y. L., Ong C. T., Leung K. Y. 2000; Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology 146:999–1009
    [Google Scholar]
  56. Zhulin I. B. 2001; The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45:157–198
    [Google Scholar]
  57. Zusman D. R. 1982; “Frizzy” mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150:1430–1437
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26786-0
Loading
/content/journal/micro/10.1099/mic.0.26786-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error