1887

Abstract

cells move by gliding, and form multicellular fruiting bodies under conditions of starvation. The authors cloned a gene, designated (for receptor for polysaccharide production), which encodes a methyl-accepting protein homologous to the chemotaxis transducers in eubacteria. The gene was co-transcribed with , a gene homologous to various multidrug transporter genes. The or single mutants showed almost identical phenotypes to the wild-type strain; however, the double mutant exhibited reduced colony expansion, cell–cell agglutination and cellular reversal frequency. The double-mutant cells also showed less binding to Congo red, which mainly binds to fibril polysaccharide, than wild-type cells. Analysis of total polysaccharide in stationary-phase cells demonstrated that in the double mutant, polysaccharide levels were decreased by about 30 % as compared with the wild-type strain. These results indicated that RppA and MmrA play a role in the biogenesis and/or assembly of polysaccharide, and the phenotypes of the double mutant may be due to the reduction in fibril polysaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26786-0
2004-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500631.html?itemId=/content/journal/micro/10.1099/mic.0.26786-0&mimeType=html&fmt=ahah

References

  1. Alting-Mees, M. A. & Short, J. M. ( 1989; ). pBluescript II: gene mapping vectors. Nucleic Acids Res 17, 9494.[CrossRef]
    [Google Scholar]
  2. Arnold, J. W. & Shimkets, L. J. ( 1988; ). Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170, 5771–5777.
    [Google Scholar]
  3. Behmlander, R. M. & Dworkin, M. ( 1991; ). Extracellular fibril and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol 173, 7810–7821.
    [Google Scholar]
  4. Behmlander, R. M. & Dworkin, M. ( 1994; ). Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176, 6295–6303.
    [Google Scholar]
  5. Bellenger, K., Ma, X., Shi, W. & Yang, Z. ( 2002; ). A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J Bacteriol 184, 5654–5660.[CrossRef]
    [Google Scholar]
  6. Blackhart, B. D. & Zusman, D. R. ( 1985; ). “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci U S A 82, 8767–8770.[CrossRef]
    [Google Scholar]
  7. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  8. Campos, J. M., Geisselesoder, J. & Zusman, D. R. ( 1978; ). Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119, 167–178.[CrossRef]
    [Google Scholar]
  9. D'Argenio, D. A., Calfee, M. W., Rainey, P. B. & Pesci, E. C. ( 2002; ). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184, 6481–6489.[CrossRef]
    [Google Scholar]
  10. Darzins, A. ( 1994; ). Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11, 137–153.[CrossRef]
    [Google Scholar]
  11. Desomer, J., Vereecke, D., Crespi, M. & Van Montagu, M. ( 1992; ). The plasmid-encoded chloramphenicol-resistance protein of Rhodococcus fascians is homologous to the transmembrane tetracycline efflux proteins. Mol Microbiol 6, 2377–2385.[CrossRef]
    [Google Scholar]
  12. Dworkin, M. ( 1963; ). Nutritional regulation of morphogenesis in Myxococcus xanthus. J Bacteriol 86, 67–72.
    [Google Scholar]
  13. Furuichi, T., Inouye, M. & Inouye, S. ( 1985; ). Novel one-step cloning vector with a transposable element: application to the Myxococcus xanthus genome. J Bacteriol 164, 270–275.
    [Google Scholar]
  14. Grimm, A. C. & Harwood, C. S. ( 1999; ). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181, 3310–3316.
    [Google Scholar]
  15. Guvener, Z. T. & McCarter, L. L. ( 2003; ). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J Bacteriol 185, 5431–5441.[CrossRef]
    [Google Scholar]
  16. Hagen, C. D., Bretscher, P. A. & Kaiser, D. ( 1979; ). Synergism between morphogenic mutants of Myxococcus xanthus. Dev Biol 64, 284–296.
    [Google Scholar]
  17. Hartzell, P. L. & Youderian, P. ( 1995; ). Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol 164, 309–323.[CrossRef]
    [Google Scholar]
  18. Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydrobenzoate. J Bacteriol 176, 6479–6488.
    [Google Scholar]
  19. Hodgkin, J. & Kaiser, D. ( 1977; ). Cell-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74, 2938–2942.[CrossRef]
    [Google Scholar]
  20. Hodgkin, J. & Kaiser, D. ( 1979a; ). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171, 167–176.[CrossRef]
    [Google Scholar]
  21. Hodgkin, J. & Kaiser, D. ( 1979b; ). Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171, 177–191.[CrossRef]
    [Google Scholar]
  22. Kaiser, D. ( 2000; ). Bacterial motility: how do pili pull? Curr Biol 10, R777–R780.[CrossRef]
    [Google Scholar]
  23. Kearns, D. B., Campbell, B. D. & Shimkets, L. J. ( 2000; ). Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. Proc Natl Acad Sci U S A 97, 11505–11510.[CrossRef]
    [Google Scholar]
  24. Kearns, D. B., Bonner, P. J., Smith, D. R. & Shimkets, L. J. ( 2002; ). An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184, 1678–1684.[CrossRef]
    [Google Scholar]
  25. Kim, S.-H., Ramaswamy, S. & Downard, J. ( 1999; ). Regulated exopolysaccharide production in Myxococcus xanthus. J Bacteriol 181, 1496–1507.
    [Google Scholar]
  26. Kimsey, H. H. & Kaiser, D. ( 1992; ). The orotidine-5′-monophosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase gene family. J Biol Chem 267, 819–824.
    [Google Scholar]
  27. Kimura, Y., Nakano, H., Terasaka, H. & Takegawa, K. ( 2001; ). Myxococcus xanthus mokA encodes a histidine kinase-response regulator hybrid sensor required for development and osmotic tolerance. J Bacteriol 183, 1140–1146.[CrossRef]
    [Google Scholar]
  28. Kirby, J. R. & Zusman, D. R. ( 2003; ). Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 2008–2013.[CrossRef]
    [Google Scholar]
  29. Le Moual, H. & Koshland, D. E., Jr ( 1996; ). Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261, 568–585.[CrossRef]
    [Google Scholar]
  30. Lee, M. & Shimkets, L. ( 1994; ). Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants. J Bacteriol 176, 2200–2209.
    [Google Scholar]
  31. Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D. R. & Shi, W. ( 2003; ). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 5443–5448.[CrossRef]
    [Google Scholar]
  32. McBride, N. J., Weinberg, R. A. & Zusman, D. R. ( 1989; ). “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A 86, 424–428.[CrossRef]
    [Google Scholar]
  33. Parkinson, J. S. ( 1993; ). Signal transduction schemes of bacteria. Cell 73, 857–871.[CrossRef]
    [Google Scholar]
  34. Plamann, L., Kuspa, A. & Kaiser, D. ( 1992; ). The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 174, 3311–3318.
    [Google Scholar]
  35. Ramaswamy, S., Dworkin, M. & Downard, J. ( 1997; ). Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179, 2863–2871.
    [Google Scholar]
  36. Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. G. & Skurray, R. A. ( 1990; ). Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4, 2051–2062.[CrossRef]
    [Google Scholar]
  37. Sargent, F., Bogsch, E. G., Stanley, N. R., Wexler, M., Robinson, C., Berks, B. C. & Palmer, T. ( 1998; ). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17, 3640–3650.[CrossRef]
    [Google Scholar]
  38. Seidel, R., Scharf, B., Gautel, M., Kleine, K., Oesterhelt, D. & Engelhard, M. ( 1995; ). The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A 92, 3036–3040.[CrossRef]
    [Google Scholar]
  39. Shi, W. & Zusman, D. R. ( 1993; ). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90, 3378–3382.[CrossRef]
    [Google Scholar]
  40. Shi, W. & Zusman, D. R. ( 1994; ). Sensor/response in Myxococcus xanthus to attractants and repellents requires the frz signal transduction system. Res Microbiol 145, 431–435.[CrossRef]
    [Google Scholar]
  41. Shi, W., Yang, Z., Sun, H., Lancero, H. & Tong, L. ( 2000; ). Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol Lett 192, 211–215.[CrossRef]
    [Google Scholar]
  42. Silakowski, B., Kunze, B., Nordsiek, G., Blöcker, H., Höfle, G. & Müller, R. ( 2000; ). The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 267, 6476–6485.[CrossRef]
    [Google Scholar]
  43. Spiers, A. J., Bohannon, J., Gehrig, S. M. & Rainey, P. B. ( 2003; ). Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50, 15–27.[CrossRef]
    [Google Scholar]
  44. Spormann, A. M. ( 1999; ). Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63, 621–641.
    [Google Scholar]
  45. Spormann, A. M. & Kaiser, D. ( 1999; ). Gliding mutants of Myxococcus xanthus with high reversal frequency and small displacements. J Bacteriol 181, 2593–2601.
    [Google Scholar]
  46. Ward, M. J. & Zusman, D. R. ( 1997; ). Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 24, 885–893.[CrossRef]
    [Google Scholar]
  47. Ward, M. J., Mok, K. C., Astling, D. P., Lew, H. & Zusman, D. R. ( 1998; ). An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J Bacteriol 180, 5697–5703.
    [Google Scholar]
  48. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G. ( 2002; ). How myxobacteria glide. Curr Biol 12, 369–377.[CrossRef]
    [Google Scholar]
  49. Wu, S. S. & Kaiser, D. ( 1995; ). Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18, 547–558.[CrossRef]
    [Google Scholar]
  50. Wu, S. S., Wu, J., Cheng, Y. L. & Kaiser, D. ( 1998; ). The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 29, 1249–1261.[CrossRef]
    [Google Scholar]
  51. Yamaguchi, A., Someya, Y. & Sawai, T. ( 1992; ). Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. J Biol Chem 267, 19155–19162.
    [Google Scholar]
  52. Yang, Z., Geng, Y., Xu, D., Kaplan, H. B. & Shi, W. ( 1998; ). A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30, 1123–1130.[CrossRef]
    [Google Scholar]
  53. Yang, Z., Ma, X., Tong, L., Kaplan, H. B., Shimkets, L. J. & Shi, W. ( 2000; ). Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182, 5793–5798.[CrossRef]
    [Google Scholar]
  54. Youderian, P., Burke, N., White, D. J. & Hartzell, P. L. ( 2003; ). Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49, 555–570.[CrossRef]
    [Google Scholar]
  55. Zhang, Y. L., Ong, C. T. & Leung, K. Y. ( 2000; ). Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology 146, 999–1009.
    [Google Scholar]
  56. Zhulin, I. B. ( 2001; ). The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45, 157–198.
    [Google Scholar]
  57. Zusman, D. R. ( 1982; ). “Frizzy” mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150, 1430–1437.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26786-0
Loading
/content/journal/micro/10.1099/mic.0.26786-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error