1887

Abstract

MC1 is able to grow on chlorophenoxy herbicides such as 2,4-dichlorophenoxypropionic acid (2,4-DCPP) and 2,4-dichlorophenoxyacetic acid as sole sources of carbon and energy. High concentrations of the potentially toxic organics inhibit the productive degradation and poison the organism. To discover the target of chlorophenoxy herbicides in MC1 and to recognize adaptation mechanisms, the response to chlorophenoxy acids at the level of proteins was analysed. The comparison of protein patterns after chemostatic growth on pyruvate and 2,4-DCPP facilitated the discovery of several proteins induced and repressed due to the substrate shifts. Many of the induced enzymes, for example two chlorocatechol 1,2-dioxygenases, are involved in the metabolism of 2,4-DCPP. A stronger induction of some catabolic enzymes (chlorocatechol 1,2-dioxygenase TfdC, chloromuconate cycloisomerase TfdD) caused by an instant increase in the concentration of 2,4-DCPP resulted in increased rates of productive detoxification and finally in resistance of the cells. Nevertheless, the decrease of the ()-2,4-DCPP-specific 2-oxoglutarate-dependent dioxygenase in 2D gels reveals a potential bottleneck in 2,4-DCPP degradation. Well-known heat-shock proteins and oxidative-stress proteins play a minor role in adaptation, because apart from DnaK only a weak or no induction of the proteins GroEL, AhpC and SodA was observed. Moreover, the modification of elongation factor Tu (TufA), a strong decrease of asparaginase and the induction of the hypothetical periplasmic protein YceI point to additional resistance mechanisms against chlorophenoxy herbicides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26774-0
2004-04-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1501005.html?itemId=/content/journal/micro/10.1099/mic.0.26774-0&mimeType=html&fmt=ahah

References

  1. Adams P., Fowler R., Howell G., Kinsella N., Skipp P., Coote P., O'Conner C. D. 1999; Defining protease specificity with proteomics: a protease with a dibasic amino acid recognition motif is regulated by a two-component signal transduction system in Salmonella. Electrophoresis 20:2241–2247 [CrossRef]
    [Google Scholar]
  2. Benndorf D., Babel W. 2002; Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress. Microbiology 148:2883–2888
    [Google Scholar]
  3. Benndorf D., Loffhagen N., Babel W. 1999; Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus. Electrophoresis 20:781–789 [CrossRef]
    [Google Scholar]
  4. Benndorf D., Loffhagen N., Babel W. 2001; Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett 200:247–252 [CrossRef]
    [Google Scholar]
  5. Blom A., Harder W., Matin A. 1992; Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol 58:331–334
    [Google Scholar]
  6. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99 [CrossRef]
    [Google Scholar]
  7. Caldas T. D., Yaagoubi A. E., Richarme G. 1998; Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482 [CrossRef]
    [Google Scholar]
  8. Cash P., Argo E., Ford L., Lawrie L., McKenzie H. 1999; A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis 20:2259–2268 [CrossRef]
    [Google Scholar]
  9. Cho Y.-S., Park S.-H., Kim C.-K., Oh K.-H. 2000; Induction of stress shock proteins DnaK and GroEl by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field. Curr Microbiol 41:33–38 [CrossRef]
    [Google Scholar]
  10. Davidson L., Brear D. R., Wingard P., Hawkins J., Kitto G. B. 1977; Purification and properties of l-glutaminase-l-asparaginase from Pseudomonas acidovorans. J Bacteriol 129:1379–1386
    [Google Scholar]
  11. Duxbury J. M., Tiedje J. M., Alexander M., Dawson J. E. 1970; 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem 18:199–201 [CrossRef]
    [Google Scholar]
  12. Evans W. C., Smith B. S., Moss P., Fernley H. N. 1971; Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J 122:509–517
    [Google Scholar]
  13. Fukumori F., Hausinger R. P. 1993; Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J Biol Chem 268:24311–24317
    [Google Scholar]
  14. Georgiou T., Yu Y.-T. N., Ekunwe S., Buttner M. J., Zuurmond A.-M., Kraal B., Kleanthous C., Snyder L. 1998; Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc Natl Acad Sci U S A 95:2891–2895 [CrossRef]
    [Google Scholar]
  15. Heipieper H. J., Diefenbach R., Keweloh H. 1992; Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852
    [Google Scholar]
  16. Holtzhauer M., Hahn V. 1988 Biochemische Labormethoden: Arbeitsvorschriften und Tabellen pp. 2–3 Berlin: Springer;
  17. Horvath M., Ditzelmüller G., Loidl M., Streichsbier F. 1990; Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium. Appl Microbiol Biotechnol 33:213–216
    [Google Scholar]
  18. Jin Y., Cerletti N. 1992; Western blotting of transforming growth factor β2. Optimization of the electrophoretic transfer. Appl Theor Electrophor 3:85–90
    [Google Scholar]
  19. Jones M. D., Petersen T. E., Nielsen K. M., Magnusson S., Sottrup-Jensen L., Gausing K., Clark B. F. 1980; The complete amino-acid sequence of elongation factor Tu from Escherichia coli. Eur J Biochem 108:507–526 [CrossRef]
    [Google Scholar]
  20. Kamagata Y., Fulthorpe R. R., Tamura K., Takami H., Forney L. J., Tiedje J. M. 1997; Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272
    [Google Scholar]
  21. Kaphammer B., Kukor J. J., Olsen R. H. 1990; Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J Bacteriol 172:2280–2286
    [Google Scholar]
  22. Kilpi S. 1980; Degradation of some phenoxy acid herbicides by mixed cultures of bacteria isolated from soil treated with 2-(2-methyl-4-chloro)phenoxypropionic acid. Microb Ecol 6:261–270 [CrossRef]
    [Google Scholar]
  23. Krayl M., Benndorf D., Loffhagen N., Babel W. 2003; Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544–1552 [CrossRef]
    [Google Scholar]
  24. Lippmann C., Lindschau C., Vijgenboom E., Erdmann V. A., Schröder W., Bosch L. 1993; Prokaryotic elongation factor Tu is phosphorylated in vivo. J Biol Chem 268:601–607
    [Google Scholar]
  25. Loffhagen N., Hartig C., Babel W. 1995; The glucose dehydrogenase-mediated energization of Acinetobacter calcoaceticus as a tool for evaluating its susceptibility to, and defence against, hazardous chemicals. Appl Microbiol Biotechnol 42:738–743 [CrossRef]
    [Google Scholar]
  26. Loffhagen N., Hartig C., Babel W. 1997; The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium. Ecotoxicol Environ Saf 36:269–274 [CrossRef]
    [Google Scholar]
  27. Loffhagen N., Babel W., Härtig C. 2003; Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides. Arch Environ Contam Toxicol 45:317–323
    [Google Scholar]
  28. Müller R. H., Babel W. 1986; Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus. Arch Microbiol 144:62–66 [CrossRef]
    [Google Scholar]
  29. Müller R. H., Jorks S., Kleinsteuber S., Babel W. 1999; Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res 154:241–246 [CrossRef]
    [Google Scholar]
  30. Müller R. H., Kleinsteuber S., Babel W. 2001; Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res 156:121–131 [CrossRef]
    [Google Scholar]
  31. Oh K. H., Tuovinen O. H. 1990; Degradation of 2,4-dichlorophenoxy acid by mixed cultures of bacteria. J Ind Microbiol 6:275–278 [CrossRef]
    [Google Scholar]
  32. Pemberton J. M., Fisher P. R. 1977; 2,4-D plasmids and persistence. Nature 268:732–733 [CrossRef]
    [Google Scholar]
  33. Peng L., Shimizu K. 2003; Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178 [CrossRef]
    [Google Scholar]
  34. Pieper D. H., Reineke W., Engesser K.-H., Knackmuss H.-J. 1988; Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102 [CrossRef]
    [Google Scholar]
  35. van Dyk T. K., Majarian W. R., Konstantinov K. B., Young R. M., Dhurjati P. S., LaRossa R. A. 1994; Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420
    [Google Scholar]
  36. Vasseur C., Labadie J., Hébraud M. 1999; Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis 20:2204–2213 [CrossRef]
    [Google Scholar]
  37. Westendorf A., Benndorf D., Babel W., Müller R. H. 2002; The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1 – protein and sequence data of RdpA and SdpA. Microbiol Res 157:317–322 [CrossRef]
    [Google Scholar]
  38. Westendorf A., Babel W., Müller R. H. 2003; Purification and characterisation of the enantiospecific dioxygenases from Delftia acidovorans MC1 initiating the degradation of phenoxypropionate and phenoxyacetate herbicides. Acta Biotechnol 23:3–17 [CrossRef]
    [Google Scholar]
  39. Young C. C., Bernlohr R. W. 1991; Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. J Bacteriol 173:3096–3100
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26774-0
Loading
/content/journal/micro/10.1099/mic.0.26774-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error