1887

Abstract

By DNA microarray, the operon was identified as being bile-activated. Transcriptional assays confirm that is activated in the presence of bile and that this response is concentration-dependent. The bile salt deoxycholate is alone able to activate transcription, while there was no response in the presence of other bile salts tested or a non-ionic detergent. Deoxycholate is able to interact with MarR and interfere with its ability to bind to the operator. In addition, incubation of salmonellae in the presence of sublethal concentrations of bile is able to enhance resistance to chloramphenicol and bile, by means of both -dependent and -independent pathways. To further characterize putative -regulated genes that may be important for the resistance phenotype, , which encodes an efflux pump, was analysed. In , is required for bile resistance, but while transcription of is activated by bile, this activation is independent of , as well as Rob, RpoS or PhoP–PhoQ. These data suggest that bile interacts with salmonellae to increase resistance to bile and other antimicrobials and that this can occur by - and -dependent pathways that function independently with respect to bile activation.

Keyword(s): Cm, chloramphenicol
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26769-0
2004-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500775.html?itemId=/content/journal/micro/10.1099/mic.0.26769-0&mimeType=html&fmt=ahah

References

  1. Alekshun M. N., Levy S. B. 1997; Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41:2067–2075
    [Google Scholar]
  2. Alekshun M. N., Levy S. B. 1999; The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7:410–413 [CrossRef]
    [Google Scholar]
  3. Ariza R. R., Li Z., Ringstad N., Demple B. 1995; Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 177:1655–1661
    [Google Scholar]
  4. Chan K., Baker S., Kim C. C., Detweiler C. S., Dougan G., Falkow S. 2003; Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J Bacteriol 185:553–563 [CrossRef]
    [Google Scholar]
  5. Cohen S. P., McMurry L. M., Hooper D. C., Wolfson J. S., Levy S. B. 1989; Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 33:1318–1325 [CrossRef]
    [Google Scholar]
  6. Cohen S. P., Levy S. B., Foulds J., Rosner J. L. 1993; Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 175:7856–7862
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  8. Eisen M. B., Brown P. O. 1999; DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205
    [Google Scholar]
  9. Ellermeier C. D., Janakiraman A., Slauch J. M. 2002; Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161 [CrossRef]
    [Google Scholar]
  10. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. 1986; Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193 [CrossRef]
    [Google Scholar]
  11. George A. M., Levy S. B. 1983; Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155:531–540
    [Google Scholar]
  12. Gunn J. S. 2000; Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913 [CrossRef]
    [Google Scholar]
  13. Gunn J. S., Miller S. I. 1996; PhoP–PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857–6864
    [Google Scholar]
  14. Gunn J. S., Hohmann E. L., Miller S. I. 1996; Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol 178:6369–6373
    [Google Scholar]
  15. Hachler H., Cohen S. P., Levy S. B. 1991; marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance inEscherichia coli. J Bacteriol 173:5532–5538
    [Google Scholar]
  16. Kunonga N. I., Sobieski R. J., Crupper S. S. 2000; Prevalence of the multiple antibiotic resistance operon (marRAB)in the genus Salmonella. FEMS Microbiol Lett 187:155–160 [CrossRef]
    [Google Scholar]
  17. Lacroix F. J., Cloeckaert A., Grepinet O., Pinault C., Popoff M. Y., Waxin H., Pardon P. 1996; Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 135:161–167 [CrossRef]
    [Google Scholar]
  18. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. 1995; Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55 [CrossRef]
    [Google Scholar]
  19. Martin R. G., Rosner J. L. 1995; Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A 92:5456–5460 [CrossRef]
    [Google Scholar]
  20. Martin R. G., Rosner J. L. 1997; Fis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob. J Bacteriol 179:7410–7419
    [Google Scholar]
  21. Martin R. G., Nyantakyi P. S., Rosner J. L. 1995; Regulation of the multiple antibiotic resistance (mar) regulon bymarORA sequences in Escherichia coli. J Bacteriol 177:4176–4178
    [Google Scholar]
  22. Martin R. G., Jair K. W., Wolf R. E. Jr, Rosner J. L. 1996; Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator inEscherichia coli. J Bacteriol 178:2216–2223
    [Google Scholar]
  23. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058 [CrossRef]
    [Google Scholar]
  24. Okusu H., Ma D., Nikaido H. 1996; AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308
    [Google Scholar]
  25. Piddock L. J., White D. G., Gensberg K., Pumbwe L., Griggs D. J. 2000; Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 44:3118–3121 [CrossRef]
    [Google Scholar]
  26. Pope L. M., Reed K. E., Payne S. M. 1995; Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun 63:3642–3648
    [Google Scholar]
  27. Prouty A. M., Gunn J. S. 2000; Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. Infect Immun 68:6763–6769 [CrossRef]
    [Google Scholar]
  28. Prouty A. M., van Velkinburgh J. C., Gunn J. S. 2002; Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of thetolQRA cluster. J Bacteriol 184:1270–1276 [CrossRef]
    [Google Scholar]
  29. Randall L. P., Woodward M. J. 2001; Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 67:1190–1197 [CrossRef]
    [Google Scholar]
  30. Rosenberg E. Y., Bertenthal D., Nilles M. L., Bertrand K. P., Nikaido H. 2003; Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619 [CrossRef]
    [Google Scholar]
  31. Rosner J. L. 1985; Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12. Proc Natl Acad Sci U S A 82:8771–8774 [CrossRef]
    [Google Scholar]
  32. Schuhmacher D. A., Klose K. E. 1999; Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J Bacteriol 181:1508–1514
    [Google Scholar]
  33. Schumacher M. A., Brennan R. G. 2002; Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 45:885–893 [CrossRef]
    [Google Scholar]
  34. Seoane A. S., Levy S. B. 1995a; Identification of new genes regulated by the marRAB operon in Escherichia coli. J Bacteriol 177:530–535
    [Google Scholar]
  35. Seoane A. S., Levy S. B. 1995b; Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon inEscherichia coli. J Bacteriol 177:3414–3419
    [Google Scholar]
  36. Sulavik M. C., Dazer M., Miller P. F. 1997; The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J Bacteriol 179:1857–1866
    [Google Scholar]
  37. Thanassi D. G., Cheng L. W., Nikaido H. 1997; Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518
    [Google Scholar]
  38. Tusher V. G., Tibshirani R., Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121 [CrossRef]
    [Google Scholar]
  39. van Velkinburgh J. C., Gunn J. S. 1999; PhoP–PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun 67:1614–1622
    [Google Scholar]
  40. White D. G., Goldman J. D., Demple B., Levy S. B. 1997; Role of the acrAB locus in organic solvent tolerance mediated by expression ofmarA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26769-0
Loading
/content/journal/micro/10.1099/mic.0.26769-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error