1887

Abstract

The -inositol catabolism pathway of has not been fully characterized but was proposed to involve step-wise multiple reactions that finally yielded acetyl-CoA and dihydroxyacetone phosphate. It is known that the operon is responsible for the catabolism of inositol. IolG catalyses the first step of -inositol catabolism, the dehydrogenation of -inositol, producing 2-keto--inositol (inosose). The second step was thought to be the dehydration of inosose. Genetic and biochemical analyses of the genes led to the identification of , encoding the enzyme for the second step of inositol catabolism, inosose dehydratase. The reaction product of inosose dehydratase was identified as -2,3-diketo-4-deoxy--inositol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26768-0
2004-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500571.html?itemId=/content/journal/micro/10.1099/mic.0.26768-0&mimeType=html&fmt=ahah

References

  1. Anderson, W. A. & Magasanik, B. ( 1971a; ). The pathway of myo-inositol degradation in Aerobacter aerogenes. Identification of the intermediate 2-deoxy-5-keto-d-gluconic acid. J Biol Chem 246, 5653–5661.
    [Google Scholar]
  2. Anderson, W. A. & Magasanik, B. ( 1971b; ). The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-d-gluconic acid to glycolytic intermediates. J Biol Chem 246, 5662–5675.
    [Google Scholar]
  3. Berman, T. & Magasanik, B. ( 1966a; ). The pathway of myo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J Biol Chem 241, 800–806.
    [Google Scholar]
  4. Berman, T. & Magasanik, B. ( 1966b; ). The pathway of myo-inositol degradation in Aerobacter aerogenes. Ring scission. J Biol Chem 241, 807–813.
    [Google Scholar]
  5. Fujita, Y. & Freese, E. ( 1981; ). Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J Bacteriol 145, 760–767.
    [Google Scholar]
  6. Fujita, Y. & Fujita, T. ( 1983; ). Genetic analysis of a pleiotropic deletion mutation (Δigf) in Bacillus subtilis. J Bacteriol 154, 864–869.
    [Google Scholar]
  7. Fujita, Y., Shindo, K., Miwa, Y. & Yoshida, K. ( 1991; ). Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene 108, 121–125.[CrossRef]
    [Google Scholar]
  8. Fujita, Y., Yoshida, K., Miwa, Y., Yanai, N., Nagakawa, E. & Kasahara, Y. ( 1998; ). Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp). J Bacteriol 180, 4309–4313.
    [Google Scholar]
  9. Galbraith, M. P., Feng, S. F., Borneman, J., Triplett, E. W., de Bruijn, F. J. & Rossbach, S. ( 1998; ). A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology 144, 2915–2924.[CrossRef]
    [Google Scholar]
  10. Jiang, G., Krishnan, A. H., Kim, Y.-M., Wacek, T. J. & Krishnan, H. B. ( 2001; ). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183, 2595–2604.[CrossRef]
    [Google Scholar]
  11. Kaempfer, R. O. & Magasanik, B. ( 1967; ). Effect of infection with T-even phage on the inducible synthesis of beta-galactosidase in Escherichia coli. J Mol Biol 27, 453–468.[CrossRef]
    [Google Scholar]
  12. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  13. McCasland, G. E., Naumann, M. O. & Durham, L. J. ( 1968; ). Alicyclic carbohydrates. XXXV. Synthesis of proto-quercitol. 220-MHz proton spectrum with the superconducting solenoid. J Org Chem 33, 4220–4227.[CrossRef]
    [Google Scholar]
  14. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  15. Poole, P. S., Blyth, A., Reid, C. J. & Walters, K. ( 1994; ). myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140, 2787–2795.[CrossRef]
    [Google Scholar]
  16. Posternak, T. ( 1962; ). scyllo-inosose (myo-inosose-2), Bacterial oxidation of myo-inositol. In Methods in Carbohydrate Chemistry, vol. I, pp. 294–297. Edited by R. L. Whistler & M. L. Wolform. New York & London: Academic Press.
  17. Ramaley, R., Fujita, Y. & Freese, E. ( 1979; ). Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem 254, 7684–7690.
    [Google Scholar]
  18. Rossbach, S., Kulpa, D. A., Rossbach, U. & de Bruijn, F. J. ( 1994; ). Molecular and genetic characterization of rhizopine catabolism (mocABCR) genes of Rhizobium meliloti L5-30. Mol Gen Genet 245, 11–24.[CrossRef]
    [Google Scholar]
  19. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Takahashi, A., Kanbe, K., Tamamura, Y. & Sato, K. ( 1998; ). Bioconversion of myo-inositol to rare cyclic sugar alcohols. In Abstracts of The First International Symposium on Disease Prevention by IP6 & other Rice Components, Kyoto, Japan (June 8–9), abstract no. PS-64, p. 116.
  21. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.[CrossRef]
    [Google Scholar]
  22. van Rooijen, R. J. & de Vos, W. M. ( 1990; ). Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem 265, 18499–18503.
    [Google Scholar]
  23. Vidal-Leiria, M. & van Uden, N. ( 1973; ). Inositol dehydrogenase from the yeast Cryptococcus melibiosum. Biochim Biophys Acta 293, 295–303.[CrossRef]
    [Google Scholar]
  24. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strain: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  25. Yoshida, K., Aoyama, D., Ishio, I., Shibayama, T. & Fujita, Y. ( 1997; ). Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J Bacteriol 179, 4591–4598.
    [Google Scholar]
  26. Yoshida, K., Shibayama, T., Aoyama, D. & Fujita, Y. ( 1999; ). Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J Mol Biol 285, 917–929.[CrossRef]
    [Google Scholar]
  27. Yoshida, K., Ishio, I., Nagakawa, E., Yamamoto, Y., Yamamoto, M. & Fujita, Y. ( 2000; ). Systematic study of gene expression and transcription organization in the gntZ–ywaA region of the Bacillus subtilis genome. Microbiology 146, 573–579.
    [Google Scholar]
  28. Yoshida, K., Yamamoto, Y., Omae, K., Yamamoto, M. & Fujita, Y. ( 2002; ). Identification of two myo-inositol transporter genes of Bacillus subtilis. J Bacteriol 184, 983–991.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26768-0
Loading
/content/journal/micro/10.1099/mic.0.26768-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error