1887

Abstract

The -inositol catabolism pathway of has not been fully characterized but was proposed to involve step-wise multiple reactions that finally yielded acetyl-CoA and dihydroxyacetone phosphate. It is known that the operon is responsible for the catabolism of inositol. IolG catalyses the first step of -inositol catabolism, the dehydrogenation of -inositol, producing 2-keto--inositol (inosose). The second step was thought to be the dehydration of inosose. Genetic and biochemical analyses of the genes led to the identification of , encoding the enzyme for the second step of inositol catabolism, inosose dehydratase. The reaction product of inosose dehydratase was identified as -2,3-diketo-4-deoxy--inositol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26768-0
2004-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500571.html?itemId=/content/journal/micro/10.1099/mic.0.26768-0&mimeType=html&fmt=ahah

References

  1. Anderson W. A., Magasanik B. 1971a; The pathway of myo-inositol degradation in Aerobacter aerogenes. Identification of the intermediate 2-deoxy-5-keto-d-gluconic acid. J Biol Chem 246:5653–5661
    [Google Scholar]
  2. Anderson W. A., Magasanik B. 1971b; The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-d-gluconic acid to glycolytic intermediates. J Biol Chem 246:5662–5675
    [Google Scholar]
  3. Berman T., Magasanik B. 1966a; The pathway of myo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J Biol Chem 241:800–806
    [Google Scholar]
  4. Berman T., Magasanik B. 1966b; The pathway of myo-inositol degradation in Aerobacter aerogenes. Ring scission. J Biol Chem 241:807–813
    [Google Scholar]
  5. Fujita Y., Freese E. 1981; Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J Bacteriol 145:760–767
    [Google Scholar]
  6. Fujita Y., Fujita T. 1983; Genetic analysis of a pleiotropic deletion mutation (Δigf) in Bacillus subtilis. J Bacteriol 154:864–869
    [Google Scholar]
  7. Fujita Y., Shindo K., Miwa Y., Yoshida K. 1991; Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression inEscherichia coli. Gene 108:121–125 [CrossRef]
    [Google Scholar]
  8. Fujita Y., Yoshida K., Miwa Y., Yanai N., Nagakawa E., Kasahara Y. 1998; Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp). J Bacteriol 180:4309–4313
    [Google Scholar]
  9. Galbraith M. P., Feng S. F., Borneman J., Rossbach S., Triplett E. W., de Bruijn F. J. 1998; A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology 144:2915–2924 [CrossRef]
    [Google Scholar]
  10. Jiang G., Krishnan A. H., Kim Y.-M., Wacek T. J., Krishnan H. B. 2001; A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness ofSinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183:2595–2604 [CrossRef]
    [Google Scholar]
  11. Kaempfer R. O., Magasanik B. 1967; Effect of infection with T-even phage on the inducible synthesis of beta-galactosidase in Escherichia coli. J Mol Biol 27:453–468 [CrossRef]
    [Google Scholar]
  12. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  13. McCasland G. E., Naumann M. O., Durham L. J. 1968; Alicyclic carbohydrates. XXXV. Synthesis of proto-quercitol. 220-MHz proton spectrum with the superconducting solenoid. J Org Chem 33:4220–4227 [CrossRef]
    [Google Scholar]
  14. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  15. Poole P. S., Blyth A., Reid C. J., Walters K. 1994; myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795 [CrossRef]
    [Google Scholar]
  16. Posternak T. 1962; scyllo-inosose (myo-inosose-2), Bacterial oxidation of myo-inositol. In Methods in Carbohydrate Chemistry vol. I pp 294–297 Edited by Whistler R. L., Wolform M. L. New York & London: Academic Press;
    [Google Scholar]
  17. Ramaley R., Fujita Y., Freese E. 1979; Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem 254:7684–7690
    [Google Scholar]
  18. Rossbach S., Kulpa D. A., Rossbach U., de Bruijn F. J. 1994; Molecular and genetic characterization of rhizopine catabolism (mocABCR) genes of Rhizobium meliloti L5-30. Mol Gen Genet 245:11–24 [CrossRef]
    [Google Scholar]
  19. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  20. Takahashi A., Kanbe K., Tamamura Y., Sato K. 1998; Bioconversion of myo-inositol to rare cyclic sugar alcohols. In Abstracts of The First International Symposium on Disease Prevention by IP6 & other Rice Components,Kyoto, Japan (June 8–9), abstract no. PS-64p– 116
    [Google Scholar]
  21. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  22. van Rooijen R. J., de Vos W. M. 1990; Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system ofLactococcus lactis. J Biol Chem 265:18499–18503
    [Google Scholar]
  23. Vidal-Leiria M., van Uden N. 1973; Inositol dehydrogenase from the yeast Cryptococcus melibiosum. Biochim Biophys Acta 293:295–303 [CrossRef]
    [Google Scholar]
  24. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strain: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  25. Yoshida K., Aoyama D., Ishio I., Shibayama T., Fujita Y. 1997; Organization and transcription of the myo-inositol operon,iol, of Bacillus subtilis. J Bacteriol 179:4591–4598
    [Google Scholar]
  26. Yoshida K., Shibayama T., Aoyama D., Fujita Y. 1999; Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J Mol Biol 285:917–929 [CrossRef]
    [Google Scholar]
  27. Yoshida K., Ishio I., Nagakawa E., Yamamoto Y., Yamamoto M., Fujita Y. 2000; Systematic study of gene expression and transcription organization in the gntZ–ywaA region of the Bacillus subtilis genome. Microbiology 146:573–579
    [Google Scholar]
  28. Yoshida K., Yamamoto Y., Omae K., Yamamoto M., Fujita Y. 2002; Identification of two myo-inositol transporter genes of Bacillus subtilis. J Bacteriol 184:983–991 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26768-0
Loading
/content/journal/micro/10.1099/mic.0.26768-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error