Full text loading...
Abstract
The phenotypic adaptation of membrane lipids in seven strains of the food-poisoning bacterium Bacillus cereus, isolated from Bangladeshi rice, is reported in relation to their ability to grow under conditions of low water activity (a w), reduced temperature and the presence of soluble rice starch. The strains have different membrane phospholipid head-group and fatty acyl compositions, and they display individual differences in their responses to both low a w and reduced temperature. The extent of the increase in anionic membrane lipids in response to low a w varies from strain to strain, is solute specific and in one strain does not occur. Growth is stimulated by the presence of soluble rice starch and results in a large rise in the proportion of diphosphatidylglycerol (DPG) at the expense of phosphatidylglycerol (PG), without any change in the proportion of total anionic phospholipids. Growth at 15 °C compared with 37 °C increases the proportions of DPG and phosphatidylethanolamine at the expense of PG. At the lower temperature there are changes in phospholipid fatty acyl composition characteristic of those expected to maintain membrane fluidity, including increases in the amount of total branched fatty acids and the anteiso-/iso-branched ratio, and a decrease in the equivalent chain-length, but there are strain differences in how those changes were achieved. In contrast to some other bacilli, there are persistent large increases in the proportions of unsaturated fatty acyl chains in phospholipids during growth at 15 °C.
- Received:
- Accepted:
- Revised:
- Published Online: