1887

Abstract

MutS is part of the bacterial mismatch repair system that corrects point mutations and small insertions/deletions that fail to be proof-read by DNA polymerase activity. In this work it is shown that the disruption of the gene generates the emergence of diverse colony morphologies in contrast with its parental wild-type strain that displayed monomorphic colonies. Interestingly, two of the morphotypes emerged at a high frequency and in a reproducible way and were selected for subsequent characterization. One of them displayed a nearly wild-type morphology while the other notably showed, compared with the wild-type strain, increased production of pyocyanin and pyoverdin, lower excretion of LasB protease and novel motility characteristics, mainly related to swarming. Furthermore, it was reproducibly observed that, after prolonged incubation in liquid culture, the pigmented variant consistently emerged from the wild-type-like variant displaying a reproducible event. It is also shown that these morphotypes not only displayed an increase in the frequency of antibiotic-resistant mutants, as described for clinical mutator isolates, but also generated mutants whose antibiotic-resistant levels were higher than those measured from spontaneous resistant mutants derived from wild-type cells. It was also found that both morphotypes showed a decreased cytotoxic capacity compared to the wild-type strain, leading to the emergence of invasive variants. By using mutated versions of a tetracycline resistance gene, the mutant showed a 70-fold increase in the reversion frequency of a +1 frameshift mutation with respect to its parental wild-type strain, allowing the suggestion that the phenotypical diversity generated in the population could be produced in part by frameshift mutations. Finally, since morphotypical diversification has also been described in clinical isolates, the possibility that this diversification was related to the high frequency hypermutability observed in CF isolates is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26751-0
2004-05-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501327.html?itemId=/content/journal/micro/10.1099/mic.0.26751-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Ghysels B., Cornelis P., Baysse C.. 2002; Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology148:2371–2381
    [Google Scholar]
  2. Alonso A., Rojo F., Martinez J. L.. 1999; Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol1:421–430[CrossRef]
    [Google Scholar]
  3. Apodaca G., Bomsel M., Lindstedt R., Engel J., Frank D., Mostov K., Wiener-Kronish J.. 1995; Characterization of Pseudomonas aeruginosa-induced MDCK cell injury: glycosylation-defective host cells are resistant to bacterial killing. Infect Immun63:1541–1551
    [Google Scholar]
  4. Ben-Jacob E., Cohen I., Gutnik D. L.. 1998; Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol52:779–806[CrossRef]
    [Google Scholar]
  5. Bjorkman J., Nagaev I., Berg O. G., Hughes D., Andersson D. I.. 2000; Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science287:1479–1482[CrossRef]
    [Google Scholar]
  6. Breitenstein S., Walter S., Bosshammer J., Römling U., Tümmler B.. 1997; Direct sputum analysis of Pseudomonas aeruginosa macrorestriction fragment genotypes in patients with cystic fibrosis. Med Microbiol Immunol186:93–99[CrossRef]
    [Google Scholar]
  7. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B.. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell3:435–445[CrossRef]
    [Google Scholar]
  8. Buermeyer A. B., Deschenes S. M., Baker S. M., Liskay R. M.. 1999; Mammalian DNA mismatch repair. Annu Rev Genet33:533–564[CrossRef]
    [Google Scholar]
  9. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H.. 1982; Adherence of biofilm-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun37:318–326
    [Google Scholar]
  10. D'Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C.. 2002; Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol184:6481–6489[CrossRef]
    [Google Scholar]
  11. de Lorenzo V., Timmis K. N.. 1994; Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol235:386–405
    [Google Scholar]
  12. Denamur E., Bonacorsi S., Giraud A..8 other authors 2002; High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol184:605–609[CrossRef]
    [Google Scholar]
  13. Deretic V., Schurr M. J., Boucher J. C., Martin D. W.. 1994; Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol176:2773–2780
    [Google Scholar]
  14. Dèziel E., Comeau Y., Villemur R.. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol183:1195–1204[CrossRef]
    [Google Scholar]
  15. Drenkard E., Ausubel F. M.. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature416:740–743[CrossRef]
    [Google Scholar]
  16. Fishel R.. 1998; Mismatch repair, molecular switches, and signal transduction. Genet Dev12:2096–2101[CrossRef]
    [Google Scholar]
  17. Fleiszig S. M. J., Zaidi T. S., Fletcher E. L., Preston M. J., Pier G. B.. 1994; Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect Immun62:3485–3492
    [Google Scholar]
  18. Fleiszig S. M. J., Zaidi T. S., Preston M. J., Grout M., Evans D. J., Pier G. B.. 1996; Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect Immun64:2288–2294
    [Google Scholar]
  19. Fleiszig S. M. J., Wiener-Kronish J. P., Miyazaki H., Vallas V., Mostov K. E., Kanada D., Sawa T., Yen T. S. B., Frank D. W.. 1997; Pseudomonas aeruginosa mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun65:579–586
    [Google Scholar]
  20. Funchain P., Yeung A., Stewart J. L., Rin L., Slupska M. M., Miller J. H.. 2000; The consequence of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics154:959–970
    [Google Scholar]
  21. Giraud A., Matic I., Tenaillon O., Clara A., Radman M., Fons M., Taddei F.. 2001; Cost and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science291:2606–2608[CrossRef]
    [Google Scholar]
  22. Giraud A., Matic I., Radman M., Fons M., Taddei F.. 2002; Mutator bacteria as a risk factor in treatment of infectious diseases. Antimicrob Agents Chemother46:863–865[CrossRef]
    [Google Scholar]
  23. Govan J. R., Deretic V.. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev60:539–574
    [Google Scholar]
  24. Gur-Arie R., Cohen C. J., Eitan Y., Shelef L., Hallerman E. M., Kashi Y.. 2000; Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genet Res10:62–71
    [Google Scholar]
  25. Häußler S., Tümmler B., Weissbrodt H., Rohde M., Steinmetz I.. 1999; Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis29:621–625[CrossRef]
    [Google Scholar]
  26. Häußler S., Ziegler I., Löttel A., Götz F., Rohde M., Wehmhöhner D., Saravanamuthu S., Tümmler B., Steinmetz I.. 2003; Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol52:295–301[CrossRef]
    [Google Scholar]
  27. Henderson I. R., Owen P., Nataro J. P.. 1999; Molecular switches – the ON and OFF of bacterial phase variation. Mol Microbiol33:919–932[CrossRef]
    [Google Scholar]
  28. Horst J. P., Wu T., Marinus M. G.. 1999; Escherichia coli mutator genes. Trends Microbiol7:29–36[CrossRef]
    [Google Scholar]
  29. Kaniga K., Delor I., Cornelis G. R.. 1991; A wide host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterolitica. Gene109:137–141[CrossRef]
    [Google Scholar]
  30. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocianin and fluorescin. J Lab Clin Med44:301
    [Google Scholar]
  31. Knutson C. A., Jeanes A.. 1968; A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem24:470–481[CrossRef]
    [Google Scholar]
  32. Kovach R. M., Peterson K. M.. 1995; Four new derivatives of broad-host-range cloning vector pBBR1MC5, carrying different antibiotic-resistance cassettes. Gene166:175–176[CrossRef]
    [Google Scholar]
  33. Kresse A. U., Dinesh S. D., Larbig K., Römling U.. 2003; Impact of large chromosomal inversion on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol47:145–158
    [Google Scholar]
  34. LeClerc J. E., Li B., Payne W. L., Cebula T. A.. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science274:1208–1210[CrossRef]
    [Google Scholar]
  35. Levy D. D., Cebula T. A.. 2001; Fidelity of replication of repetitive DNA in mutS and repair proficient Escherichia coli. Mut Res474:1–14[CrossRef]
    [Google Scholar]
  36. Mahenthiralingam E., Campbell M. E., Speert D. P.. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun62:596–605
    [Google Scholar]
  37. Mao E. M., Lane L., Lee J., Miller J. H.. 1997; Proliferation of mutators in a cell population. J Bacteriol179:417–422
    [Google Scholar]
  38. Martinez J. L., Baquero F.. 2000; Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother44:1771–1777[CrossRef]
    [Google Scholar]
  39. Martinez J. L., Baquero F.. 2002; Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev15:647–679[CrossRef]
    [Google Scholar]
  40. McKenzie G. J., Rosenberg S. M.. 2001; Adaptive mutation, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol4:586–594[CrossRef]
    [Google Scholar]
  41. Metzgar D., Wills C.. 2000; Evolutionary changes in mutation rates and spectra and their influence on adaptation of pathogens. Microb Infect2:1513–1522[CrossRef]
    [Google Scholar]
  42. Miller K., O'Neill A. J., Chopra I.. 2002; Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes. J Antimicrob Chemother49:925–934[CrossRef]
    [Google Scholar]
  43. Modrich P., Lahue R.. 1996; Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem65:101–133[CrossRef]
    [Google Scholar]
  44. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E.. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol4:24–33[CrossRef]
    [Google Scholar]
  45. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J.. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288:1251–1253[CrossRef]
    [Google Scholar]
  46. Oliver A., Baquero F., Blázquez J.. 2002; The mismatch repair system (mutS,mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol43:1641–1650[CrossRef]
    [Google Scholar]
  47. Pezza R. J., Smania A. M., Barra J. L., Argaraña C. E.. 2002a; Nucleotides and heteroduplex DNA preserve the active conformation of MutS by preventing protein oligomerization. Biochem J361:87–95[CrossRef]
    [Google Scholar]
  48. Pezza R. J., Villarreal M. A., Montich G. G., Argaraña C. E.. 2002b; Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Nucleic Acids Res30:4700–4708[CrossRef]
    [Google Scholar]
  49. Plotkowski M. C., Saliba A. M., Pereira S. M. H., Cervante M. P., Bajolet-Laudinat O.. 1994; Pseudomonas aeruginosa selective adherence to and entry into endothelial cells. Infect Immun62:5456–5463
    [Google Scholar]
  50. Rainey P. B., Travisano M.. 1998; Adaptive radiation in a heterogeneous environment. Nature394:69–72[CrossRef]
    [Google Scholar]
  51. Rayssiguier C., Thaler D. S., Radman M.. 1989; The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature342:396–401[CrossRef]
    [Google Scholar]
  52. Richardson A. R., Stojiljkovic I.. 2001; Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol Microbiol40:645–655[CrossRef]
    [Google Scholar]
  53. Robertson B. D., Meyer T. F.. 1992; Genetic variation in pathogenic bacteria. Trends Genet8:422–427[CrossRef]
    [Google Scholar]
  54. Siegmund I., Wagner F.. 1991; New methods for detecting rhamnolipids excreted by Pseudomonas species during growth in mineral agar. BioTechniques5:265–268
    [Google Scholar]
  55. Sokurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu X., Krofelt K. A., Struve C., Schembri M. A., Hasty D. L.. 1998; Pathogenic adaptation of Escherichia coli by natural variation of FimH adhesin. Proc Natl Acad Sci U S A95:8922–8926[CrossRef]
    [Google Scholar]
  56. Sokurenko E. V., Hasty D. L., Dykhuizen D. E.. 1999; Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol7:191–195[CrossRef]
    [Google Scholar]
  57. Taddei F., Matic I., Godelle B., Radman M.. 1997; To be a mutator, or how pathogenic and comensal bacteria can evolve rapidly. Trends Microbiol5:427–429[CrossRef]
    [Google Scholar]
  58. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M.. 1997; Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J16:3303–3311[CrossRef]
    [Google Scholar]
  59. van Delden C., Iglewski B. H.. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis4:551–560[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26751-0
Loading
/content/journal/micro/10.1099/mic.0.26751-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error