1887

Abstract

A link between control of respiration and glucose repression in yeast is reported. The gene was overexpressed in a Δ deletion background, generating a mutant in which respiratory function is stimulated and glucose repression is diminished. Although this combination does not result in derepression of genes encoding proteins involved in respiratory function, it nevertheless generates resistance against 2-deoxyglucose and hence contributes to more derepressed growth characteristics. Unexpectedly, overexpression of in the Δ deletion strain causes strong repression of several target genes of the Mig1p repressor. Repression is not restricted to glucose growth conditions and does not require the glucose repressors Mig2p or Hxk2p. It was observed that expression of the gene is transiently repressed after glucose is added to respiratory-growing Δ cells. Additional overexpression of prevents release from this novel repressed state. The data presented show that respiratory function controls transcription of genes required for the metabolism of alternative sugars. This respiratory feedback control is suggested to regulate the feed into glycolysis in derepressed conditions.

Keyword(s): 2-DOG, 2-deoxyglucose
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26742-0
2004-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500929.html?itemId=/content/journal/micro/10.1099/mic.0.26742-0&mimeType=html&fmt=ahah

References

  1. Andrade, R. P. & Casal, M. ( 2001; ). Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet Biol 32, 105–111.[CrossRef]
    [Google Scholar]
  2. Blom, J., De Mattos, M. J. & Grivell, L. A. ( 2000; ). Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl Environ Microbiol 66, 1970–1973.[CrossRef]
    [Google Scholar]
  3. Bojunga, N. & Entian, K. D. ( 1999; ). Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol Gen Genet 262, 869–875.[CrossRef]
    [Google Scholar]
  4. Cereghino, G. & Scheffler, I. E. ( 1996; ). Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover. EMBO J 15, 363–374.
    [Google Scholar]
  5. De Vit, M. J., Waddle, J. A. & Johnston, M. ( 1997; ). Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8, 1603–1618.[CrossRef]
    [Google Scholar]
  6. Diderich, J. A., Raamsdonk, L. M., Kruckeberg, A. L., Berden, J. A. & Van Dam, K. ( 2001; ). Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted. Appl Environ Microbiol 67, 1587–1593.[CrossRef]
    [Google Scholar]
  7. Forsburg, S. L. & Guarente, L. ( 1989; ). Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Annu Rev Cell Biol 5, 153–180.[CrossRef]
    [Google Scholar]
  8. Gamo, F. J., Lafuente, M. J. & Gancedo, C. ( 1994; ). The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J Bacteriol 176, 7423–7429.
    [Google Scholar]
  9. Gancedo, J. M. ( 1998; ). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334.
    [Google Scholar]
  10. Grivell, L. A. ( 1995; ). Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Mol Biol 30, 121–164.[CrossRef]
    [Google Scholar]
  11. Herrero, P., Martinez-Campa, C. & Moreno, F. ( 1998; ). The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434, 71–76.[CrossRef]
    [Google Scholar]
  12. Klein, C. J., Rasmussen, J. J., Ronnow, B., Olsson, L. & Nielsen, J. ( 1999; ). Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J Biotechnol 68, 197–212.[CrossRef]
    [Google Scholar]
  13. Lascaris, R. F., Groot, E., Hoen, P. B., Mager, W. H. & Planta, R. J. ( 2000; ). Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Nucleic Acids Res 28, 1390–1396.[CrossRef]
    [Google Scholar]
  14. Lascaris, R., Bussemaker, H. J., Boorsma, A., Piper, M., van der Spek, H., Grivell, L. & Blom, J. ( 2002; ). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol 4 (published online, 17 December 2002).
    [Google Scholar]
  15. Lutfiyya, L. L. & Johnston, M. ( 1996; ). Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16, 4790–4797.
    [Google Scholar]
  16. Ozcan, S. & Johnston, M. ( 1999; ). Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63, 554–569.
    [Google Scholar]
  17. Raamsdonk, L. M. ( 2000; ). Physiological responses of carbon fluxes to deletion of genes in S. cerevisiae. PhD thesis, University of Amsterdam.
  18. Raamsdonk, L. M., Diderich, J. A., Kuiper, A., van Gaalen, M., Kruckeberg, A. L., Berden, J. A., Van Dam, K. & Kruckberg, A. L. ( 2001; ). Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene. Yeast 18, 1023–1033.[CrossRef]
    [Google Scholar]
  19. Schmidt, M. C., McCartney, R. R., Zhang, X., Tillman, T. S., Solimeo, H., Wolfl, S., Almonte, C. & Watkins, S. C. ( 1999; ). Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19, 4561–4571.
    [Google Scholar]
  20. van Maris, A. J. A., Bakker, B. M., Brandt, M., Boorsma, A., De Mattos, M. J., Grivell, L. A., Pronk, J. T. & Blom, J. ( 2001; ). Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Res 1, 139–149.[CrossRef]
    [Google Scholar]
  21. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. ( 1994; ). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.[CrossRef]
    [Google Scholar]
  22. Wu, J. & Trumbly, R. J. ( 1998; ). Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14, 985–1000.[CrossRef]
    [Google Scholar]
  23. Zimmermann, F. K. & Scheel, I. ( 1977; ). Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol Gen Genet 154, 75–82.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26742-0
Loading
/content/journal/micro/10.1099/mic.0.26742-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error