1887

Abstract

Enteropathogenic (EPEC), an important paediatric diarrhoeal pathogen, employs multiple adhesins to colonize the small bowel and produces characteristic ‘attaching and effacing’ (A/E) lesions on small intestinal enterocytes. EPEC adhesins that have been associated with A/E adhesion and intestinal colonization include bundle-forming pili (BFP), EspA filaments and intimin. BFP are involved in bacteria–bacteria interaction and microcolony formation but their role in cell adhesion remains unclear; EspA filaments are components of the EPEC type III secretion system but since they interact directly with host cells they may also function as adhesins; intimin is the well characterized intimate EPEC adhesin which binds the translocated intimin receptor, Tir. However, other uncharacterized host cell receptors have been implicated in intimin-mediated adhesion. In this study, the role of BFP, EspA filaments and intimin in EPEC adhesion to intestinal brush border cells was assessed by observing adhesion of wild-type EPEC strain E2348/69 and a set of isogenic single, double and triple mutants in , and (intimin gene) to differentiated human intestinal Caco-2 cells. E2348/69 ( ) adhered rapidly (<10 min) to the brush border of Caco-2 cells and subsequently produced microcolonies and typical A/E lesions. Non-intimate brush border adhesion of double mutant strain UMD880 ( ) also occurred rapidly, whereas adhesion of strain UMD886 ( ) occurred later in the infection (>1 h) and with much lower efficiency; confocal microscopy indicated BFP and EspA-mediated adhesion, respectively. Strain UMD883 ( ), which is unable to translocate Tir, was non-adherent although this strain was able to form intimate attachment and A/E lesions when co-cultured with strain CVD206 ( ) which supplied Tir to the membrane. Single mutant strains CVD206 ( ) and UMD872 ( ) showed adherence characteristics of strain UMD880 ( ), whilst triple mutant strain UMD888 ( ) was totally non-adherent. These results support an adhesive role for BFP and EspA in initial brush border cell attachment, and in typical EPEC which express both BFP and EspA filaments suggest a predominant role for BFP; EspA filaments, however, could serve as initial attachment factors in atypical EPEC which lacks BFP. The study found no evidence for an independent host cell intimin receptor or for other adhesive factors able to support bacterial adherence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26740-0
2004-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500527.html?itemId=/content/journal/micro/10.1099/mic.0.26740-0&mimeType=html&fmt=ahah

References

  1. Anantha, R. P., Stone, K. D. & Donnenberg, M. S. ( 2000; ). Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol 182, 2498–2506.[CrossRef]
    [Google Scholar]
  2. Badea, L., Doughty, S., Nicholls, L., Sloan, J., Robins-Browne, R. M. & Hartland, E. L. ( 2003; ). Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microb Pathog 34, 205–215.[CrossRef]
    [Google Scholar]
  3. Batchelor, M., Knutton, S., Caprioli, A., Huter, V., Zanial, M., Dougan, G. & Frankel, G. ( 1999; ). Development of a universal intimin antiserum and PCR primers. J Clin Microbiol 37, 3822–3827.
    [Google Scholar]
  4. Bieber, D., Ramer, S. W., Wu, C. Y., Murray, W. J., Tobe, T., Fernandez, R. & Schoolnik, G. K. ( 1998; ). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118.[CrossRef]
    [Google Scholar]
  5. Campellone, K. G. & Leong, J. M. ( 2003; ). Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157 : H7. Curr Opin Microbiol 6, 82–90.[CrossRef]
    [Google Scholar]
  6. Collington, G. K., Booth, I. W. & Knutton, S. ( 1998; ). Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection. Gut 42, 200–207.[CrossRef]
    [Google Scholar]
  7. Cravioto, A., Gross, R. J., Scotland, S. M. & Rowe, B. ( 1979; ). An adhesive factor found in strains of Escherichia belonging to the traditional infantile enteropathogenic serotype. Curr Microbiol 3, 95–99.[CrossRef]
    [Google Scholar]
  8. Daniell, S. J., Takahashi, N., Wilson, R. & 7 other authors ( 2001; ). The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3, 865–871.[CrossRef]
    [Google Scholar]
  9. Donnenberg, M. S. & Kaper, J. B. ( 1991; ). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59, 4310–4317.
    [Google Scholar]
  10. Donnenberg, M. S., Giron, J. A., Nataro, J. P. & Kaper, J. B. ( 1992; ). A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6, 3427–3437.[CrossRef]
    [Google Scholar]
  11. Ebel, F., Podzadel, T., Rohde, M., Kresse, A. U., Kramer, S., Deibel, C., Guzman, C. A. & Chakraborty, T. ( 1998; ). Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol Microbiol 30, 147–161.[CrossRef]
    [Google Scholar]
  12. Elliott, S. J. & Kaper, J. B. ( 1997; ). Role of type 1 fimbriae in EPEC infections. Microb Pathog 23, 113–118.[CrossRef]
    [Google Scholar]
  13. Frankel, G., Phillips, A. D., Rosenshine, I., Dougan, G., Kaper, J. B. & Knutton, S. ( 1998; ). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30, 911–921.[CrossRef]
    [Google Scholar]
  14. Frankel, G., Phillips, A. D., Trabulsi, L. R., Knutton, S., Dougan, G. & Matthews, S. ( 2001; ). Intimin and the host cell – is it bound to end in Tir(s)? Trends Microbiol 9, 214–218.[CrossRef]
    [Google Scholar]
  15. Giron, J. A., Ho, A. S. & Schoolnik, G. K. ( 1991; ). An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710–713.[CrossRef]
    [Google Scholar]
  16. Giron, J. A., Ho, A. S. & Schoolnik, G. K. ( 1993; ). Characterization of fimbriae produced by enteropathogenic Escherichia coli. J Bacteriol 175, 7391–7403.
    [Google Scholar]
  17. Giron, J. A., Torres, A. G., Freer, E. & Kaper, J. B. ( 2002; ). The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44, 361–379.[CrossRef]
    [Google Scholar]
  18. Hartland, E. L., Batchelor, M., Delahay, R. M., Hale, C., Matthews, S., Dougan, G., Knutton, S., Connerton, I. & Frankel, G. ( 1999; ). Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 32, 151–158.[CrossRef]
    [Google Scholar]
  19. Hicks, S., Frankel, G., Kaper, J. B., Dougan, G. & Phillips, A. D. ( 1998; ). Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect Immun 66, 1570–1578.
    [Google Scholar]
  20. Kaper, J. B. ( 1996; ). Defining EPEC. Rev Microbiol Sao Paulo 27, 130–133.
    [Google Scholar]
  21. Kenny, B., Lai, L. C., Finlay, B. B. & Donnenberg, M. S. ( 1996; ). EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol 20, 313–323.[CrossRef]
    [Google Scholar]
  22. Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A. & Finlay, B. B. ( 1997; ). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.[CrossRef]
    [Google Scholar]
  23. Klapproth, J. M., Scaletsky, I. C., McNamara, B. P., Lai, L. C., Malstrom, C., James, S. P. & Donnenberg, M. S. ( 2000; ). A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68, 2148–2155.[CrossRef]
    [Google Scholar]
  24. Knutton, S. ( 1995; ). Electron microscopical methods in adhesion. Methods Enzymol 253, 145–158.
    [Google Scholar]
  25. Knutton, S., Lloyd, D. R. & McNeish, A. S. ( 1987; ). Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55, 69–77.
    [Google Scholar]
  26. Knutton, S., Baldwin, T., Williams, P. H. & McNeish, A. S. ( 1989; ). Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57, 1290–1298.
    [Google Scholar]
  27. Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolff, C., Dougan, G. & Frankel, G. ( 1998; ). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17, 2166–2176.[CrossRef]
    [Google Scholar]
  28. Knutton, S., Shaw, R. K., Anantha, R. P., Donnenberg, M. S. & Zorgani, A. A. ( 1999; ). The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol Microbiol 33, 499–509.[CrossRef]
    [Google Scholar]
  29. Knutton, S., Shaw, R. & Frankel, G. ( 2002; ). Interaction of enteropathogenic Escherichia coli with red blood cell monolayers. Methods Enzymol 358, 350–355.
    [Google Scholar]
  30. Levine, M. M., Berquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R., Stoman, S. & Rowe, B. ( 1978; ). Escherichia coli that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1 (8074), 119–122.
    [Google Scholar]
  31. Levine, M. M., Nataro, J. P., Karch, H., Baldini, M. M., Kaper, J. B., Black, R. E., Clements, M. L. & O'Brien, A. D. ( 1985; ). The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. J Infect Dis 152, 550–559.[CrossRef]
    [Google Scholar]
  32. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664–1668.[CrossRef]
    [Google Scholar]
  33. Moon, H. W., Whipp, S. C., Argenzio, R. A., Levine, M. M. & Giannella, R. A. ( 1983; ). Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41, 1340–1351.
    [Google Scholar]
  34. Nataro, J. P. & Kaper, J. B. ( 1998; ). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.
    [Google Scholar]
  35. Nataro, J. P., Kaper, J. B., Robins-Browne, R., Prado, V., Vial, P. & Levine, M. M. ( 1987a; ). Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6, 829–831.[CrossRef]
    [Google Scholar]
  36. Nataro, J. P., Maher, K. O., Mackie, P. & Kaper, J. B. ( 1987b; ). Characterization of plasmids encoding the adherence factor of enteropathogenic Escherichia coli. Infect Immun 55, 2370–2377.
    [Google Scholar]
  37. Nougayrede, J. P., Fernandes, P. J. & Donnenberg, M. S. ( 2003; ). Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5, 359–372.[CrossRef]
    [Google Scholar]
  38. Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C. & Abe, A. ( 2001; ). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98, 11638–11643.[CrossRef]
    [Google Scholar]
  39. Shaw, R. K., Daniell, S., Ebel, F., Frankel, G. & Knutton, S. ( 2001; ). EspA-filament-mediated protein translocation into red blood cells. Cell Microbiol 3, 213–222.[CrossRef]
    [Google Scholar]
  40. Shaw, R. K., Daniell, S., Frankel, G. & Knutton, S. ( 2002; ). Enteropathogenic Escherichia coli translocate functional Tir and form an intimin-Tir intimate attachment to red blood cell membranes. Microbiology 148, 1355–1365.
    [Google Scholar]
  41. Sinclair, H. B. & O'Brien, A. D. ( 2002; ). Cell-surface localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157 : H7. J Biol Chem 277, 2876–2885.[CrossRef]
    [Google Scholar]
  42. Tobe, T. & Sasakawa, C. ( 2001; ). Role of bundle-forming pilus of enteropathogenic Escherichia coli in host cell adherence and in microcolony development. Cell Microbiol 3, 579–585.[CrossRef]
    [Google Scholar]
  43. Tobe, T. & Sasakawa, C. ( 2002; ). Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 4, 29–42.[CrossRef]
    [Google Scholar]
  44. Yona-Nadler, C., Umanski, T., Aizawa, S.-I., Friedberg, D. & Rosenshine, I. ( 2003; ). Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology 149, 877–884.[CrossRef]
    [Google Scholar]
  45. Zhang, H. Z. & Donnenberg, M. S. ( 1996; ). DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol Microbiol 21, 787–797.[CrossRef]
    [Google Scholar]
  46. Zhou, X., Giron, J. A., Torres, A. G., Crawford, J. A., Negrete, E., Vogel, S. N. & Kaper, J. B. ( 2003; ). Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect Immun 71, 2120–2129.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26740-0
Loading
/content/journal/micro/10.1099/mic.0.26740-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error