1887

Abstract

Diversity studies of enteric have relied almost entirely on faecal isolations on the assumption that they are representative of flora found throughout the gastrointestinal tract. The authors have addressed this belief by analysing isolates obtained from the duodenum, ileum, colon and faeces of pigs. isolates were obtained from eight pigs and characterized using multi-locus enzyme electrophoresis and PCR-based screening for a range of factors thought to be associated with intestinal and extra-intestinal disease. There are four main genetic groups of commensal (A, B1, B2, D). Group A strains represented 76 % of the isolates from the duodenum, ileum and colon compared to 58 % of the strains isolated from faeces. A nested molecular analysis of variance based on the allozyme and virulence factor screening results showed that differences among individual pigs accounted for 6 % of the observed genetic diversity, whilst 27 % of the genetic variation could be explained by clonal composition differences among gut regions. Finally, the absence of virulence genes in these commensals indicates that they may be suitable as a probiotic consortium, particularly if they also display increased adherence to enterocytes and antagonistic activity against pathogenic strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26733-0
2004-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501735.html?itemId=/content/journal/micro/10.1099/mic.0.26733-0&mimeType=html&fmt=ahah

References

  1. Ballyk, M. & Smith, H. ( 1999; ). A model of microbiological growth in a plug flow reactor with wall attachment. Math Biosci 158, 95–126.[CrossRef]
    [Google Scholar]
  2. Bettelheim, K. A., Goldwater, P. N., Evangelidis, H., Pearce, J. L. & Smith, D. L. ( 1992; ). Distribution of toxigenic Escherichia coli serotypes in the intestines of infants. Comp Immun Microbiol Infect Dis 15, 65–70.[CrossRef]
    [Google Scholar]
  3. Chin, J. C. ( 2003; ). Revisiting the “hygiene hypothesis” in gastrointestinal allergy. Curr Opin Gastroenterol 18, 705–710.
    [Google Scholar]
  4. Chin, J. C. & Mullbacher, A. ( 2003; ). Immune activation versus hyporesponsiveness and tolerance in the gut. In Gut Flora, Nutrition, Immunity and Health, pp. 178–195. Edited by R. Fuller & G. Perdigon. Oxford: Blackwell.
  5. Chivers, D. J. & Langer, P. ( 1994; ). The Digestive Systems in Mammals: Food, Form and Function. Cambridge, UK: Cambridge University Press.
  6. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555–4558.[CrossRef]
    [Google Scholar]
  7. Duriez, P., Clermont, O., Bonacorsi, S., Bingen, E., Chaventre, A., Elion, J., Picard, B. & Denamur, E. ( 2001; ). Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology 147, 1671–1676.
    [Google Scholar]
  8. Ewing, W. N. & Cole, D. J. A. ( 1994; ). The gastrointestinal tract. In The Living Gut – an Introduction to Micro-Organisms in Nutrition, pp. 10–28. Edited by W. Ewing & D. Cole. Nottingham, UK: Context Publication.
  9. Excoffier, L., Smouse, P. E. & Quattro, J. M. ( 1992; ). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
    [Google Scholar]
  10. Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. ( 1998; ). Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62, 1157–1170.
    [Google Scholar]
  11. Gismondo, M. R., Drago, L. & Lombardi, A. ( 1999; ). Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12, 287–292.[CrossRef]
    [Google Scholar]
  12. Gordon, D. M. ( 1997; ). The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143, 2039–2046.[CrossRef]
    [Google Scholar]
  13. Gordon, D. M. ( 2001; ). Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147, 1079–1085.
    [Google Scholar]
  14. Gordon, D. M. & Cowling, A. ( 2003; ). The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149, 3575–3586.[CrossRef]
    [Google Scholar]
  15. Gordon, D. M. & Lee, J. ( 1999; ). The genetic structure of enteric bacteria from Australian mammals. Microbiology 145, 2673–2682.
    [Google Scholar]
  16. Gordon, D. M., Bauer, S. & Johnson, J. R. ( 2002; ). The genetic structure of Escherichia coli populations in primary and secondary habitats. Microbiology 148, 1513–1522.
    [Google Scholar]
  17. Grauke, L. J., Kudva, I. T., Yoon, J. W., Hunt, C. W., Williams, C. J. & Hovde, C. J. ( 2002; ). Gastrointestinal tract location of Escherichia coli O157 : H7 in ruminants. Appl Environ Microbiol 68, 2269–2277.[CrossRef]
    [Google Scholar]
  18. Hartl, D. L. & Dykhuizen, D. E. ( 1984; ). The population genetics of Escherichia coli. Annu Rev Genet 18, 31–68.[CrossRef]
    [Google Scholar]
  19. Herzer, P. J., Inouye, S., Inouye, M. & Whittam, T. S. ( 1990; ). Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 172, 6175–6181.
    [Google Scholar]
  20. Hohwy, J., Reinholdt, J. & Mogens, K. ( 2001; ). Population dynamics of Streptococcus mitis in its natural habitat. Infect Immun 69, 6055–6063.[CrossRef]
    [Google Scholar]
  21. Johnson, J. R. & Stell, A. L. ( 2000; ). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181, 261–272.[CrossRef]
    [Google Scholar]
  22. Kailasapathy, K. & Chin, J. C. ( 2000; ). Survival and therapeutic potential of probiotics organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78, 80–88.[CrossRef]
    [Google Scholar]
  23. Law, D. ( 2000; ). Virulence factors of Escherichia coli O157 and other shiga toxin-producing E. coli. J Appl Microbiol 88, 729–745.[CrossRef]
    [Google Scholar]
  24. Ochman, H. & Selander, R. K. ( 1984; ). Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157, 690–692.
    [Google Scholar]
  25. Ørskov, F. & Ørskov, I. ( 1992; ). Escherichia coli serotyping and disease in man and animals. Can J Microbiol 38, 699–704.[CrossRef]
    [Google Scholar]
  26. Osek, J. ( 1999; ). Prevalence of virulence factors of Escherichia coli strains isolated from diarrheic and healthy piglets after weaning. Vet Microbiol 68, 209–217.[CrossRef]
    [Google Scholar]
  27. Ouwehand, A. C., Kirjavainen, P. V., Gronlund, M. M., Isolauri, E. & Salminen, S. J. ( 1999; ). Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy J 9, 623–630.[CrossRef]
    [Google Scholar]
  28. Paton, A. W. & Paton, J. C. ( 1998; ). Detection and characterization of shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111 and rfb O157. J Clin Microbiol 36, 598–602.
    [Google Scholar]
  29. Pupo, G. M., Lan, R., Reeves, R. & Baverstock, P. R. ( 2000; ). Population genetics of Escherichia coli in a natural population of native Australian rats. Environ Microbiol 2, 594–610.[CrossRef]
    [Google Scholar]
  30. Selander, R. K., Caugant, D. A. & Whittam, T. S. ( 1987; ). Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology, pp. 1625–1648. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  31. Todoriki, K., Mukai, T., Sato, S. & Toba, T. ( 2001; ). Inhibition of adhesion of food-borne pathogens to Caco-2 cells by Lactobacillus strains. J Appl Microbiol 91, 154–159.[CrossRef]
    [Google Scholar]
  32. Whittam, T. S. ( 1998; ). Evolution of Escherichia coli O157 : H7 and other Shiga toxin-producing E. coli strains. In Escherichia coli O157 : H7 and Other Shiga-Toxin-Producing E. coli Strains, pp. 195–209. Edited by J. B. Kaper & A. D. O'Brien. Washington, DC: American Society for Microbiology.
  33. Whittam, T. S., Ochman, H. & Selander, R. K. ( 1983; ). Geographical components of linkage disequilibrium in natural populations of Escherichia coli. Mol Biol Evol 1, 67–83.
    [Google Scholar]
  34. Wright, S. ( 1943; ). Isolation by distance. Genetics 28, 114–138.
    [Google Scholar]
  35. Wu, X.-Y., Chapman, T., Gordon, D., Thuy, D. N., Driesen, S., Walker, M. & Chin, J. ( 2003; ). Molecular virulence gene typing of clinical E. coli isolates from pigs with post weaning diarrhoea. In Manipulating Pig Production, Proceedings of the Ninth Biennual Conference of the Australasian Pig Science Association, p. 59. Edited by J. E. Paterson. Werribee, Victoria: Australasian Pig Science Association (APSA).
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26733-0
Loading
/content/journal/micro/10.1099/mic.0.26733-0
Loading

Data & Media loading...

vol. , part 6, pp. 1735 - 1740

MLEE and virulence factor screening results for all isolates examined are given in the supplementary PDF file.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error