1887

Abstract

High-level resistance to class IIa bacteriocins has been directly associated with the absent EIIAB (MptA) subunit of the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS) () in strains. Class IIa bacteriocin-resistant strains used in this study were a spontaneous resistant, B73-MR1, and a defined mutant, EGDe-. Both strains were previously reported to have the EIIAB PTS component missing. This study shows that these class IIa bacteriocin-resistant strains have significantly decreased specific growth and glucose consumption rates, but they also have a significantly higher growth yield than their corresponding wild-type strains, B73 and EGDe, respectively. In the presence of glucose, the strains showed a shift from a predominantly lactic-acid to a mixed-acid fermentation. It is here proposed that elimination of the EIIAB in the resistant strains has caused a reduced glucose consumption rate and a reduced specific growth rate. The lower glucose consumption rate can be correlated to a shift in metabolism to a more efficient pathway with respect to ATP production per glucose, leading to a higher biomass yield. Thus, the cost involved in obtaining bacteriocin resistance, i.e. losing substrate transport capacity leading to a lower growth rate, is compensated for by a higher biomass yield.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26731-0
2004-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500335.html?itemId=/content/journal/micro/10.1099/mic.0.26731-0&mimeType=html&fmt=ahah

References

  1. Andersen, H. W., Solem, C., Hammer, K. & Jensen, P. R. ( 2001; ). Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183, 3458–3467.[CrossRef]
    [Google Scholar]
  2. Chaillou, S., Postma, P. W. & Pouwels, P. H. ( 2001; ). Contribution of the phosphoenolpyruvate : mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. Microbiology 147, 671–679.
    [Google Scholar]
  3. Cocaign-Bousquet, M., Garrigues, C., Loubiere, P. & Lindley, N. D. ( 1996; ). Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70, 253–267.[CrossRef]
    [Google Scholar]
  4. Dalet, K., Cenatiempo, Y., Cossart, P., The European Listeria Genome Consortium & Héchard, Y. ( 2001; ). A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147, 3263–3269.
    [Google Scholar]
  5. Dykes, G. A. & Hastings, J. W. ( 1998; ). Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett Appl Microbiol 26, 5–8.[CrossRef]
    [Google Scholar]
  6. Ennahar, S., Deschamps, N. & Richard, J. ( 2000a; ). Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 41, 1–4.[CrossRef]
    [Google Scholar]
  7. Ennahar, S., Sashihara, T., Sonomoto, K. & Ishizaki, A. ( 2000b; ). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24, 85–106.[CrossRef]
    [Google Scholar]
  8. Garrigues, C., Loubiere, P., Lindley, N. D. & Cocaign-Bousquet, M. (1997; ). Control of the shift from homolactic to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 5282–5287.
    [Google Scholar]
  9. Glaser, P., Frangeul, L., Buchrieser, C. & 52 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  10. Gravesen, A., Jydegaard Axelsen, A.-M., Mendes da Silva, J., Hansen, T. B. & Knøchel, S. ( 2002a; ). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl Environ Microbiol 68, 756–764.[CrossRef]
    [Google Scholar]
  11. Gravesen, A., Ramnath, M., Rechinger, K. B., Andersen, N., Jänsch, L., Héchard, Y., Hastings, J. W. & Knøchel, S. ( 2002b; ). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148, 2361–2369.
    [Google Scholar]
  12. Héchard, Y. & Sahl, H.-G. ( 2002; ). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84, 545–557.[CrossRef]
    [Google Scholar]
  13. Héchard, Y., Pelletier, C., Cenatiempo, Y. & Frère, J. ( 2001; ). Analysis of σ 54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147, 1575–1580.
    [Google Scholar]
  14. Klaenhammer, T. R. ( 1993; ). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12, 39–86.[CrossRef]
    [Google Scholar]
  15. Lengeler, J. W., Jahreis, K. & Wehmeier, U. F. ( 1994; ). Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188, 1–28.[CrossRef]
    [Google Scholar]
  16. Parker, C. & Hutkins, R. W. ( 1997; ). Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl Environ Microbiol 63, 543–546.
    [Google Scholar]
  17. Pine, L., Malcolm, G. B., Brooks, J. B & Daneshvar, M. I. ( 1989; ). Physiological studies on the growth and utilisation of sugars by Listeria species. Can J Microbiol 35, 245–254.[CrossRef]
    [Google Scholar]
  18. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543–594.
    [Google Scholar]
  19. Premaratne, R. J., Lin, W. J. & Johnson, E. A. ( 1991; ). Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol 57, 3046–3048.
    [Google Scholar]
  20. Rekhif, N., Atrih, A. & Lefebvre, G. ( 1994; ). Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria. Curr Microbiol 28, 237–241.[CrossRef]
    [Google Scholar]
  21. Romick, T. L., Fleming, H. P. & McFeeters, R. F. ( 1996; ). Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl Environ Microbiol 62, 304–307.
    [Google Scholar]
  22. Siebold, C., Flukiger, K., Beutler, R. & Erni, B. ( 2001; ). Carbohydrate transporters of the bacterial phosphoenolpyruvate : sugar phosphotransferase system (PTS). FEBS Lett 504, 104–111.[CrossRef]
    [Google Scholar]
  23. Tchieu, J., Norris, V., Edwards, J. S., & Saier, M. H., Jr ( 2001; ). The complete PTS system in Escherichia coli. J Mol Microbiol Biotechnol 3, 329–346.
    [Google Scholar]
  24. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate : sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187–207.[CrossRef]
    [Google Scholar]
  25. Ward, D. E., van der Weijden, C. C., van der Merwe, M. J., Westerhoff, H. V., Claiborne, A. & Snoep, J. L. ( 2000; ). Branched-chain α-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J Bacteriol 182, 3239–3246.[CrossRef]
    [Google Scholar]
  26. Yamada, T. & Carlsson, J. ( 1975; ). Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124, 55–61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26731-0
Loading
/content/journal/micro/10.1099/mic.0.26731-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error