1887

Abstract

Expression of the major virulence cluster in is positively regulated by the transcription factor PrfA and is influenced by several environmental factors, including the presence of readily metabolized carbohydrates such as cellobiose and glucose. Although little is understood about the mechanisms through which environmental factors influence expression of the PrfA regulon, evidence for structural and functional similarities of PrfA to the CRP-FNR family of regulatory proteins suggests the possibility that PrfA activity could be modulated by a small molecule ligand. The identity of components of the PrfA-associated regulatory pathway was sought through the isolation of mutants that exhibit high levels of PrfA-controlled gene expression in the presence of cellobiose or glucose. Here are described the properties and preliminary genetic analysis in two different genetic loci, and , both unlinked by general transduction to the major virulence cluster. A mutation in deregulates the expression of PrfA-controlled genes in the presence of several repressing sugars and other environmental conditions, a phenotype similar to that of a G145S substitution in PrfA itself. A mutation in the locus, within , results in a cellobiose-specific defect in virulence gene regulation. Gene products encoded by the locus share homology with proteins involved in the sensing and transport of -glucosides in other bacteria. Mutations in both and are required for full relief of cellobiose-mediated repression of the PrfA regulon. These results suggest the existence of two semi-independent pathways for cellobiose-mediated repression and further reconcile conflicting reports in previous literature concerning the repressive effects of carbohydrates on virulence gene expression in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26718-0
2004-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500321.html?itemId=/content/journal/micro/10.1099/mic.0.26718-0&mimeType=html&fmt=ahah

References

  1. Behari, J. & Youngman, P. ( 1998a; ). Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun 66, 3635–3642.
    [Google Scholar]
  2. Behari, J. & Youngman, P. ( 1998b; ). A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180, 6316–6324.
    [Google Scholar]
  3. Bockmann, R., Dickneite, C., Goebel, W. & Bohne, J. ( 2000; ). PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol Microbiol 36, 487–497.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Brehm, K., Ripio, M. T., Kreft, J. & Vazquez-Boland, J. A. ( 1999; ). The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides. J Bacteriol 181, 5024–5032.
    [Google Scholar]
  6. Camilli, A., Portnoy, D. A. & Youngman, P. ( 1990; ). Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172, 3738–3744.
    [Google Scholar]
  7. Camilli, A., Tilney, L. G. & Portnoy, D. A. ( 1993; ). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8, 143–157.[CrossRef]
    [Google Scholar]
  8. Chakraborty, T., Leimeister-Wachter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T. & Notermans, S. ( 1992; ). Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174, 568–574.
    [Google Scholar]
  9. Debarbouille, M., Martin-Verstraete, I., Klier, A. & Rapoport, G. ( 1991; ). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A 88, 2212–2216.[CrossRef]
    [Google Scholar]
  10. Dickneite, C., Böckmann, R., Spory, A., Goebel, W. & Sokolovic, Z. ( 1998; ). Differential interaction of the transcription factor PrfA and the PrfA-activating factor (Paf) of Listeria monocytogenes with target sequences. Mol Microbiol 27, 915–928.[CrossRef]
    [Google Scholar]
  11. Farber, J. M. & Peterkin, P. I. ( 1991; ). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55, 476–511.
    [Google Scholar]
  12. Freitag, N. E. ( 2000; ). Genetic tools for use with Listeria monocytogenes. In Gram-Positive Pathogens, pp. 488–498. Edited by V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, & J. I. Rood. Washington, DC: American Society for Microbiology.
  13. Freitag, N. E. & Portnoy, D. A. ( 1994; ). Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 12, 845–853.[CrossRef]
    [Google Scholar]
  14. Freitag, N. E., Youngman, P. & Portnoy, D. A. ( 1992; ). Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J Bacteriol 174, 1293–1298.
    [Google Scholar]
  15. Freitag, N. E., Rong, L. & Portnoy, D. A. ( 1993; ). Regulation of the prfA transcriptional activator of Listeria monocytogenes, multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61, 2537–2544.
    [Google Scholar]
  16. Glaser, P., Frangeul, L., Buchrieser, C. & 52 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  17. Herler, M., Bubert, A., Goetz, M., Vega, Y., Vazquez-Boland, J. A. & Goebel, W. ( 2001; ). Positive selection of mutations leading to loss or reduction of transcriptional activity of PrfA, the central regulator of Listeria monocytogenes virulence. J Bacteriol 183, 5562–5570.[CrossRef]
    [Google Scholar]
  18. Hodgson, D. A. ( 2000; ). Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35, 312–323.[CrossRef]
    [Google Scholar]
  19. Huillet, E., Larpin, S., Pardon, P. & Berche, P. ( 1999; ). Identification of a new locus in Listeria monocytogenes involved in cellobiose-dependent repression of hly expression. FEMS Microbiol Lett 174, 265–272.[CrossRef]
    [Google Scholar]
  20. Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M. & Cossart, P. ( 2002; ). An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.[CrossRef]
    [Google Scholar]
  21. Kaiser, A. D. ( 1984; ). Genetics of myxobacteria. In Myxobacteria, Development and Cell Interactions, pp. 163–184. Edited by E. Rosenberg. New York: Springer.
  22. Karow, M. L. & Piggot, P. J. ( 1995; ). Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69–74.[CrossRef]
    [Google Scholar]
  23. Kreft, J. & Vazquez-Boland, J. A. ( 2001; ). Regulation of virulence genes in Listeria. Int J Med Microbiol 291, 145–157.[CrossRef]
    [Google Scholar]
  24. Kreft, J., Bohne, J., Gross, R., Kestler, H., Sokolovic, Z. & Goebel, W. ( 1995; ). Control of Listeria monocytogenes virulence genes by the transcriptional regulator PrfA. In Signal Transduction and Bacterial Virulence, pp. 129–142. Edited by R. Rappuoli, V. Scarlato & B. Arico. Austin, TX: R. G. Landes Company.
  25. Lalic-Multhaler, M., Bohne, J. & Goebel, W. ( 2001; ). In vitro transcription of PrfA-dependent and -independent genes of Listeria monocytogenes. Mol Microbiol 42, 111–120.
    [Google Scholar]
  26. Lampidis, R., Gross, R., Sokolovic, Z., Goebel, W. & Kreft, J. ( 1994; ). The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol 13, 141–151.[CrossRef]
    [Google Scholar]
  27. Leimeister-Wachter, M., Haffner, C., Domann, E., Goebel, W. & Chakraborty, T. ( 1990; ). Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci U S A 87, 8336–8340.[CrossRef]
    [Google Scholar]
  28. Martin, I., Debarbouille, M., Ferrari, E., Klier, A. & Rapoport, G. ( 1987; ). Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208, 177–184.[CrossRef]
    [Google Scholar]
  29. Martin-Verstraete, I., Debarbouille, M., Klier, A. & Rapoport, G. ( 1990; ). Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214, 657–671.[CrossRef]
    [Google Scholar]
  30. Martin-Verstraete, I., Charrier, V., Stulke, J., Galinier, A., Erni, B., Rapoport, G. & Deutscher, J. ( 1998; ). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28, 293–303.[CrossRef]
    [Google Scholar]
  31. Mengaud, J., Dramsi, S., Gouin, E., Vazquez-Boland, J. A., Milon, G. & Cossart, P. ( 1991; ). Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5, 2273–2283.[CrossRef]
    [Google Scholar]
  32. Milenbachs, A. A., Brown, D. P., Moors, M. & Youngman, P. ( 1997; ). Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23, 1075–1085.[CrossRef]
    [Google Scholar]
  33. Moors, M. A., Levitt, B., Youngman, P. & Portnoy, D. A. ( 1999; ). Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67, 131–139.
    [Google Scholar]
  34. Park, S. F. & Kroll, R. G. ( 1993; ). Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8, 653–661.[CrossRef]
    [Google Scholar]
  35. Park, S. F., Stewart, G. S. A. B. & Kroll, R. G. ( 1992; ). The use of bacterial luciferase for monitoring the environmental regulation of expression of genes encoding virulence factors in Listeria monocytogenes. J Gen Microbiol 138, 2619–2627.[CrossRef]
    [Google Scholar]
  36. Renzoni, A., Klarsfeld, A., Dramsi, S. & Cossart, P. ( 1997; ). Evidence that PrfA, the pleitropic activator of virulence genes in Listeria monocytogenes can be present but inactive. Infect Immun 65, 1515–1518.
    [Google Scholar]
  37. Renzoni, A., Cossart, P. & Dramsi, S. ( 1999; ). PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34, 552–561.[CrossRef]
    [Google Scholar]
  38. Ripio, M. T., Dominguez-Bernal, G., Suarez, M., Brehm, K., Berche, P. & Vazquez-Boland, J. A. ( 1996; ). Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147, 371–384.[CrossRef]
    [Google Scholar]
  39. Ripio, M.-T., Brehm, K., Lara, M., Suárez, M. & Vázquez-Boland, J.-A. ( 1997a; ). Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA-dependent and coordinately expressed with virulence factors. J Bacteriol 179, 7174–7180.
    [Google Scholar]
  40. Ripio, M.-T., Dominguez-Bernal, G., Lara, M., Suarez, M. & Vazquez-Boland, J.-A. ( 1997b; ). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 179, 1533–1540.
    [Google Scholar]
  41. Shetron-Rama, L. M., Marquis, H., Bouwer, H. G. A. & Freitag, N. E. ( 2002; ). Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 70, 1087–1096.[CrossRef]
    [Google Scholar]
  42. Smith, K. & Youngman, P. ( 1992; ). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74, 705–711.[CrossRef]
    [Google Scholar]
  43. Tobisch, S., Glaser, P., Kruger, S. & Hecker, M. ( 1997; ). Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol 179, 496–506.
    [Google Scholar]
  44. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. & Kreft, J. ( 2001; ). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  45. Vega, Y., Dickneite, C., Ripio, M.-T., Böckmann, R., Gonzalez-Zorn, B., Novella, S., Gominguez-Bernal, G., Goebel, W. & Vazquez-Boland, W. ( 1998; ). Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein, the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 180, 6655–6660.
    [Google Scholar]
  46. Williams, J. R., Thayyullathil, C. & Freitag, N. E. ( 2000; ). Sequence variations within PrfA DNA binding sites and effects on Listeria monocytogenes virulence gene expression. J Bacteriol 182, 837–841.[CrossRef]
    [Google Scholar]
  47. Youngman, P. ( 1987; ). Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. In Plasmids, a Practical Approach, pp. 79–103. Edited by K. Hardy. Oxford: IRL Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26718-0
Loading
/content/journal/micro/10.1099/mic.0.26718-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error