1887

Abstract

are Gram-positive soil bacteria that are used industrially, not only as a source of medically important natural compounds, but also as a host for the secretory production of a number of heterologous proteins. A good understanding of the different secretion processes in this organism is therefore of major importance. The functionality of the recently discovered bacterial twin-arginine translocation (Tat) pathway has already been shown in . Here, the aberrant phenotype of Δ and Δ single mutants is described. Both mutants are characterized by a dispersed growth in liquid medium, an impaired morphological differentiation on solid medium and growth retardation. To reveal the extent to which the Tat pathway is used in , putative Tat-dependent precursor proteins of , a very close relative of , and of , of which the genomes have been completely sequenced, were identified by a modified version of the computer program designed by Rose and colleagues [ Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. (2002). , 943–950 ]. A list of 230 precursor proteins was obtained; this is the highest number of putative Tat substrates found in any genome so far. In addition to the tyrosinase, it was also demonstrated that the secretion of the xylanase C is Tat-dependent. The predicted Tat substrates belong to a variety of protein classes, with a high number of proteins functioning in degradation of macromolecules, in binding and transport, and in secondary metabolism. Only a minor fraction of the proteins seem to bind a cofactor. The aberrant phenotype of the Δ and Δ mutants together with the high number of putative Tat-dependent substrates suggests that the Tat pathway has a distinct and more important role in protein secretion than in most other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26684-0
2004-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500021.html?itemId=/content/journal/micro/10.1099/mic.0.26684-0&mimeType=html&fmt=ahah

References

  1. Angelini, S., Moreno, R., Gouffi, K., Santini, C., Yamagishi, A., Berenguer, J. & Wu, L. ( 2001; ). Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Lett 506, 103–107.[CrossRef]
    [Google Scholar]
  2. Anné, J., Van Mellaert, L. & Eyssen, H. ( 1990; ). Optimum conditions for efficient transformation of Streptomyces venezuelae protoplasts. Appl Microbiol Biotechnol 32, 431–435.[CrossRef]
    [Google Scholar]
  3. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  4. Berks, B. C. ( 1996; ). A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22, 393–404.[CrossRef]
    [Google Scholar]
  5. Berks, B. C., Sargent, F. & Palmer, T. ( 2000; ). The Tat protein export pathway. Mol Microbiol 35, 260–274.[CrossRef]
    [Google Scholar]
  6. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  7. Binnie, C., Cossar, J. D. & Stewart, D. I. ( 1997; ). Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15, 315–320.[CrossRef]
    [Google Scholar]
  8. Blaudeck, N., Kreutzenbeck, P., Freudl, R. & Sprenger, G. A. ( 2003; ). Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185, 2811–2819.[CrossRef]
    [Google Scholar]
  9. Bolhuis, A. ( 2002; ). Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148, 3335–3346.
    [Google Scholar]
  10. Brink, S., Bogsch, E. G., Edwards, W. R., Hynds, P. J. & Robinson, C. ( 1998; ). Targeting of thylakoid proteins by the delta pH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434, 425–430.[CrossRef]
    [Google Scholar]
  11. Cristóbal, S., de Gier, J.-W., Nielsen, H. & von Heijne, G. ( 1999; ). Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18, 2982–2990.[CrossRef]
    [Google Scholar]
  12. DeLisa, M. P., Tullman, D. & Georgiou, G. ( 2003; ). Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100, 6115–6120.[CrossRef]
    [Google Scholar]
  13. Dilks, K., Rose, R. W., Hartmann, E. & Pohlschröder, M. ( 2003; ). Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185, 1478–1483.[CrossRef]
    [Google Scholar]
  14. Ding, Z. & Christie, P. J. ( 2003; ). Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185, 760–771.[CrossRef]
    [Google Scholar]
  15. Geukens, N., Lammertyn, E., Van Mellaert, L. & 7 other authors ( 2001; ). Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183, 4752–4760.[CrossRef]
    [Google Scholar]
  16. Gross, R., Simon, J. & Kröger, A. ( 1999; ). The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes. Arch Microbiol 172, 227–232.[CrossRef]
    [Google Scholar]
  17. Halbig, D., Hou, B., Freudl, R., Sprenger, G. A. & Klösgen, R. B. ( 1999a; ). Bacterial proteins carrying twin-R signal peptides are specifically targeted by the delta pH-dependent transport machinery of the thylakoid membrane system. FEBS Lett 447, 95–98.[CrossRef]
    [Google Scholar]
  18. Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R. & Sprenger, G. A. ( 1999b; ). The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263, 543–551.[CrossRef]
    [Google Scholar]
  19. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  20. Ize, B., Stanley, N. R., Buchanan, G. & Palmer, T. ( 2003; ). Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48, 1183–1193.[CrossRef]
    [Google Scholar]
  21. Jongbloed, J. D. H., Martin, U., Antelmann, H., Hecker, M., Tjalsma, H., Venema, G., Bron, S., van Dijl, J. M. & Müller, J. ( 2000; ). TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275, 41350–41357.[CrossRef]
    [Google Scholar]
  22. Jongbloed, J. D. H., Antelmann, H., Hecker, M. & 7 other authors ( 2002; ). Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277, 44068–44078.[CrossRef]
    [Google Scholar]
  23. Kawamoto, S. & Ochi, K. ( 1998; ). Comparative ribosomal protein (L11 and L30) sequence analyses of several Streptomyces spp. commonly used in genetic studies. Int J Syst Bacteriol 48, 597–600.[CrossRef]
    [Google Scholar]
  24. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000; ). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  25. Kojima, S., Obata, S., Kumagai, I. & Miura, K. ( 1990; ). Alteration of the specificity of the Streptomyces subtilisin inhibitor by gene engineering. Biotechnology 8, 449–452.[CrossRef]
    [Google Scholar]
  26. Korn, F., Weingärtner, B. & Kutzner, H. J. ( 1978; ). A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales, pp. 251–270. Edited by E. Freechsen, I. Tarnak & J. H. Thumin. Stuttgart: Fisher.
  27. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.[CrossRef]
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. Lammertyn, E., Van Mellaert, L., Schacht, S., Dillen, C., Sablon, E., Van Broekhoven, A. & Anné, J. ( 1997; ). Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol 63, 1808–1813.
    [Google Scholar]
  30. Lammertyn, E., Desmyter, S., Schacht, S., Van Mellaert, L. & Anné, J. ( 1998; ). Influence of charge variation in the Streptomyces venezuelae alpha-amylase signal peptide on heterologous protein production by Streptomyces lividans. Appl Microbiol Biotechnol 49, 424–430.[CrossRef]
    [Google Scholar]
  31. Miller, G. L. ( 1959; ). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31, 426–428.[CrossRef]
    [Google Scholar]
  32. Muth, G., Nussbaumer, B., Wohlleben, W. & Pühler, A. ( 1989; ). A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219, 341–348.[CrossRef]
    [Google Scholar]
  33. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6.[CrossRef]
    [Google Scholar]
  34. Ochsner, U. A., Snyder, A., Vasil, A. I. & Vasil, M. L. ( 2002; ). Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A 99, 8312–8317.[CrossRef]
    [Google Scholar]
  35. Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. ( 2002; ). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45, 943–950.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Santini, C. L., Ize, B., Chanal, A., Muller, M., Giordano, G. & Wu, L. F. ( 1998; ). A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17, 101–112.[CrossRef]
    [Google Scholar]
  38. Santini, C. L., Bernadac, A., Zhang, M., Chanal, A., Ize, B., Blanco, C. & Wu, L. F. ( 2001; ). Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276, 8159–8164.[CrossRef]
    [Google Scholar]
  39. Sargent, F., Berks, B. C. & Palmer, T. ( 2002; ). Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178, 77–84.[CrossRef]
    [Google Scholar]
  40. Schaerlaekens, K., Schierova, M., Lammertyn, E., Geukens, N., Anné, J. & Van Mellaert, L. ( 2001; ). Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183, 6727–6732.[CrossRef]
    [Google Scholar]
  41. Stanley, N. R., Palmer, T. & Berks, B. C. ( 2000; ). The twin-arginine consensus motif of the Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275, 11591–11596.[CrossRef]
    [Google Scholar]
  42. Strickler, J. E., Berka, T. R., Gorniak, J., Fornwald, J., Keys, R., Rowland, J. J., Rosenberg, M. & Taylor, D. P. ( 1992; ). Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. J Biol Chem 267, 3236–3241.
    [Google Scholar]
  43. Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S. & van Dijl, J. M. ( 2000; ). Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64, 515–547.[CrossRef]
    [Google Scholar]
  44. van Dijl, J. M., Braun, P. G., Robinson, C. & 7 other authors ( 2002; ). Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J Biotechnol 98, 243–254.[CrossRef]
    [Google Scholar]
  45. Van Mellaert, L., Dillen, C., Proost, P. & 7 other authors ( 1994; ). Efficient secretion of biologically active mouse tumor necrosis factor alpha by Streptomyces lividans. Gene 150, 153–158.[CrossRef]
    [Google Scholar]
  46. Von Heijne, G. ( 1984; ). How signal sequences maintain cleavage specificity. J Mol Biol 173, 243–251.[CrossRef]
    [Google Scholar]
  47. Voulhoux, R., Ball, G., Ize, B., Vasil, M. L., Lazdunski, A., Wu, L. F. & Filloux, A. ( 2001; ). Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20, 6735–6741.[CrossRef]
    [Google Scholar]
  48. Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J. & Buttner, M. J. ( 1986; ). Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203, 468–478.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26684-0
Loading
/content/journal/micro/10.1099/mic.0.26684-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error