1887

Abstract

are Gram-positive soil bacteria that are used industrially, not only as a source of medically important natural compounds, but also as a host for the secretory production of a number of heterologous proteins. A good understanding of the different secretion processes in this organism is therefore of major importance. The functionality of the recently discovered bacterial twin-arginine translocation (Tat) pathway has already been shown in . Here, the aberrant phenotype of Δ and Δ single mutants is described. Both mutants are characterized by a dispersed growth in liquid medium, an impaired morphological differentiation on solid medium and growth retardation. To reveal the extent to which the Tat pathway is used in , putative Tat-dependent precursor proteins of , a very close relative of , and of , of which the genomes have been completely sequenced, were identified by a modified version of the computer program designed by Rose and colleagues [ Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. (2002). , 943–950 ]. A list of 230 precursor proteins was obtained; this is the highest number of putative Tat substrates found in any genome so far. In addition to the tyrosinase, it was also demonstrated that the secretion of the xylanase C is Tat-dependent. The predicted Tat substrates belong to a variety of protein classes, with a high number of proteins functioning in degradation of macromolecules, in binding and transport, and in secondary metabolism. Only a minor fraction of the proteins seem to bind a cofactor. The aberrant phenotype of the Δ and Δ mutants together with the high number of putative Tat-dependent substrates suggests that the Tat pathway has a distinct and more important role in protein secretion than in most other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26684-0
2004-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500021.html?itemId=/content/journal/micro/10.1099/mic.0.26684-0&mimeType=html&fmt=ahah

References

  1. Angelini S., Moreno R., Gouffi K., Santini C., Yamagishi A., Berenguer J., Wu L. 2001; Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway inEscherichia coli. FEBS Lett 506:103–107 [CrossRef]
    [Google Scholar]
  2. Anné J., Van Mellaert L., Eyssen H. 1990; Optimum conditions for efficient transformation of Streptomyces venezuelae protoplasts. Appl Microbiol Biotechnol 32:431–435 [CrossRef]
    [Google Scholar]
  3. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M.40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). . Nature 417:141–147 [CrossRef]
    [Google Scholar]
  4. Berks B. C. 1996; A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol 22:393–404 [CrossRef]
    [Google Scholar]
  5. Berks B. C., Sargent F., Palmer T. 2000; The Tat protein export pathway. Mol Microbiol 35:260–274 [CrossRef]
    [Google Scholar]
  6. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. . Gene 116:43–49 [CrossRef]
    [Google Scholar]
  7. Binnie C., Cossar J. D., Stewart D. I. 1997; Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15:315–320 [CrossRef]
    [Google Scholar]
  8. Blaudeck N., Kreutzenbeck P., Freudl R., Sprenger G. A. 2003; Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819 [CrossRef]
    [Google Scholar]
  9. Bolhuis A. 2002; Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway?. Microbiology 148:3335–3346
    [Google Scholar]
  10. Brink S., Bogsch E. G., Edwards W. R., Hynds P. J., Robinson C. 1998; Targeting of thylakoid proteins by the delta pH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434:425–430 [CrossRef]
    [Google Scholar]
  11. Cristóbal S., de Gier J.-W., Nielsen H., von Heijne G. 1999; Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990 [CrossRef]
    [Google Scholar]
  12. DeLisa M. P., Tullman D., Georgiou G. 2003; Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100:6115–6120 [CrossRef]
    [Google Scholar]
  13. Dilks K., Rose R. W., Hartmann E., Pohlschroder M. 2003; Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483 [CrossRef]
    [Google Scholar]
  14. Ding Z., Christie P. J. 2003; Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185:760–771 [CrossRef]
    [Google Scholar]
  15. Geukens N., Lammertyn E., Van Mellaert L. & 7 other authors; 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183:4752–4760 [CrossRef]
    [Google Scholar]
  16. Gross R., Simon J., Kröger A. 1999; The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase fromWolinella succinogenes. Arch Microbiol 172:227–232 [CrossRef]
    [Google Scholar]
  17. Halbig D., Hou B., Freudl R., Sprenger G. A., Klosgen R. B. 1999a; Bacterial proteins carrying twin-R signal peptides are specifically targeted by the delta pH-dependent transport machinery of the thylakoid membrane system. FEBS Lett 447:95–98 [CrossRef]
    [Google Scholar]
  18. Halbig D., Wiegert T., Blaudeck N., Freudl R., Sprenger G. A. 1999b; The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263:543–551 [CrossRef]
    [Google Scholar]
  19. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531 [CrossRef]
    [Google Scholar]
  20. Ize B., Stanley N. R., Buchanan G., Palmer T. 2003; Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193 [CrossRef]
    [Google Scholar]
  21. Jongbloed J. D. H., Martin U., Antelmann H., Hecker M., Tjalsma H., Venema G., Bron S., van Dijl J. M., Muller J. 2000; TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275:41350–41357 [CrossRef]
    [Google Scholar]
  22. Jongbloed J. D. H., Antelmann H., Hecker M. & 7 other authors; 2002; Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078 [CrossRef]
    [Google Scholar]
  23. Kawamoto S., Ochi K. 1998; Comparative ribosomal protein (L11 and L30) sequence analyses of several Streptomyces spp. commonly used in genetic studies. Int J Syst Bacteriol 48:597–600 [CrossRef]
    [Google Scholar]
  24. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  25. Kojima S., Obata S., Kumagai I., Miura K. 1990; Alteration of the specificity of the Streptomyces subtilisin inhibitor by gene engineering. Biotechnology 8:449–452 [CrossRef]
    [Google Scholar]
  26. Korn F., Weingärtner B., Kutzner H. J. 1978; A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales pp. 251–270 Edited by Freechsen E., Tarnak I., Thumin J. H. Stuttgart: Fisher;
    [Google Scholar]
  27. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  29. Lammertyn E., Van Mellaert L., Schacht S., Dillen C., Sablon E., Van Broekhoven A., Anne J. 1997; Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol 63:1808–1813
    [Google Scholar]
  30. Lammertyn E., Desmyter S., Schacht S., Van Mellaert L., Anne J. 1998; Influence of charge variation in the Streptomyces venezuelae alpha-amylase signal peptide on heterologous protein production byStreptomyces lividans. Appl Microbiol Biotechnol 49:424–430 [CrossRef]
    [Google Scholar]
  31. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  32. Muth G., Nussbaumer B., Wohlleben W., Puhler A. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348 [CrossRef]
    [Google Scholar]
  33. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  34. Ochsner U. A., Snyder A., Vasil A. I., Vasil M. L. 2002; Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A 99:8312–8317 [CrossRef]
    [Google Scholar]
  35. Rose R. W., Brüser T., Kissinger J. C., Pohlschroder M. 2002; Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  37. Santini C. L., Ize B., Chanal A., Muller M., Giordano G., Wu L. F. 1998; A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17:101–112 [CrossRef]
    [Google Scholar]
  38. Santini C. L., Bernadac A., Zhang M., Chanal A., Ize B., Blanco C., Wu L. F. 2001; Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164 [CrossRef]
    [Google Scholar]
  39. Sargent F., Berks B. C., Palmer T. 2002; Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178:77–84 [CrossRef]
    [Google Scholar]
  40. Schaerlaekens K., Schierova M., Lammertyn E., Geukens N., Anné J., Van Mellaert L. 2001; Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183:6727–6732 [CrossRef]
    [Google Scholar]
  41. Stanley N. R., Palmer T., Berks B. C. 2000; The twin-arginine consensus motif of the Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275:11591–11596 [CrossRef]
    [Google Scholar]
  42. Strickler J. E., Berka T. R., Gorniak J., Fornwald J., Keys R., Rowland J. J., Rosenberg M., Taylor D. P. 1992; Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. . J Biol Chem 267:3236–3241
    [Google Scholar]
  43. Tjalsma H., Bolhuis A., Jongbloed J. D. H., Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547 [CrossRef]
    [Google Scholar]
  44. van Dijl J. M., Braun P. G., Robinson C. & 7 other authors; 2002; Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J Biotechnol 98:243–254 [CrossRef]
    [Google Scholar]
  45. Van Mellaert L., Dillen C., Proost P.7 other authors 1994; Efficient secretion of biologically active mouse tumor necrosis factor alpha by Streptomyces lividans. Gene 150:153–158 [CrossRef]
    [Google Scholar]
  46. Von Heijne G. 1984; How signal sequences maintain cleavage specificity. J Mol Biol 173:243–251 [CrossRef]
    [Google Scholar]
  47. Voulhoux R., Ball G., Ize B., Vasil M. L., Lazdunski A., Wu L. F., Filloux A. 2001; Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741 [CrossRef]
    [Google Scholar]
  48. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26684-0
Loading
/content/journal/micro/10.1099/mic.0.26684-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error