1887

Abstract

The roles of two adjacent genes in the chromosome with functions in starvation survival and the response to stressful conditions have been characterized. One of these, , encoding a hypoxanthine–guanine phosphoribosyltransferase homologue, was initially identified in a transposon mutagenesis screen. Mutation of affects starvation survival in amino-acid-limiting conditions and the ability of to grow in high-salt concentrations. Downstream of is , which encodes a membrane-bound, ATP- and Zn-dependent ‘AAA’-type protease. Mutation of in leads to pleiotropic defects including slower growth, sensitivity to salt, acid, methyl viologen and potassium tellurite stresses, and reduced survival in amino-acid- or phosphate-limiting conditions. Both and gene fusions are expressed maximally in the post-exponential phase of growth. Although secretion of exoproteins is not affected, an mutant is attenuated in a murine skin lesion model of pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26674-0
2004-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500373.html?itemId=/content/journal/micro/10.1099/mic.0.26674-0&mimeType=html&fmt=ahah

References

  1. Akiyama, Y., Ogura, T. & Ito, K. ( 1994; ). Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J Biol Chem 269, 5218–5224.
    [Google Scholar]
  2. Akiyama, Y., Kihara, A. & Ito, K. ( 1996a; ). Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett 399, 26–28.[CrossRef]
    [Google Scholar]
  3. Akiyama, Y., Kihara, A., Tokuda, H. & Ito, K. ( 1996b; ). FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J Biol Chem 271, 31196–31201.[CrossRef]
    [Google Scholar]
  4. Cassels, R., Oliva, B. & Knowles, D. ( 1995; ). Occurrence of the regulatory nucleotides ppGpp and pppGpp following induction of the stringent response in staphylococci. J Bacteriol 177, 5161–5165.
    [Google Scholar]
  5. Chan, P. F., Foster, S. J., Ingham, E. & Clements, M. O. ( 1998; ). The Staphylococcus aureus alternative sigma factor σ B controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 180, 6082–6089.
    [Google Scholar]
  6. Clements, M. & Foster, S. ( 1999; ). Stress resistance in Staphylococcus aureus. Trends Microbiol 7, 458–462.[CrossRef]
    [Google Scholar]
  7. Clements, M. O., Watson, S. P. & Foster, S. J. ( 1999a; ). Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181, 3898–3903.
    [Google Scholar]
  8. Clements, M. O., Watson, S., Poole, R. K. & Foster, S. J. ( 1999b; ). CtaA of Staphylococcus aureus is required for starvation survival, recovery, and cytochrome biosynthesis. J Bacteriol 181, 501–507.
    [Google Scholar]
  9. Deuerling, E., Mogk, A., Richter, C., Purucker, M. & Schumann, W. ( 1997; ). The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23, 921–933.[CrossRef]
    [Google Scholar]
  10. Fischer, B., Rummel, G., Aldridge, P. & Jenal, U. ( 2002; ). The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol Microbiol 44, 461–478.[CrossRef]
    [Google Scholar]
  11. Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L. & 20 other authors ( 2002; ). A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43, 1387–1400.[CrossRef]
    [Google Scholar]
  12. Ge, Z. & Taylor, D. E. ( 1996; ). Sequencing, expression, and genetic characterization of the Helicobacter pylori ftsH gene encoding a protein homologous to members of a novel putative ATPase family. J Bacteriol 178, 6151–6157.
    [Google Scholar]
  13. Gentry, D., Li, T., Rosenberg, M. & McDevitt, D. ( 2000; ). The rel gene is essential for in vitro growth of Staphylococcus aureus. J Bacteriol 182, 4995–4997.[CrossRef]
    [Google Scholar]
  14. Guérout-Fleury, A. M., Shazand, K., Frandsen, N. & Stragier, P. ( 1995; ). Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167, 335–336.[CrossRef]
    [Google Scholar]
  15. Herman, C., Thevenet, D., D'Ari, R. & Bouloc, P. ( 1995; ). Degradation of σ 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92, 3516–3520.[CrossRef]
    [Google Scholar]
  16. Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K. & Foster, S. J. ( 2002a; ). σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184, 5457–5467.[CrossRef]
    [Google Scholar]
  17. Horsburgh, M. J., Wharton, S. J., Cox, A. G., Ingham, E., Peacock, S. & Foster, S. J. ( 2002b; ). MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44, 1269–1286.[CrossRef]
    [Google Scholar]
  18. Kemp, E. H., Sammons, R. L., Moir, A., Sun, D. & Setlow, P. ( 1991; ). Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol 173, 4646–4652.
    [Google Scholar]
  19. Kihara, A., Akiyama, Y. & Ito, K. ( 1995; ). FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci U S A 92, 4532–4536.[CrossRef]
    [Google Scholar]
  20. Kobayashi, K., Ehrlich, S. D., Albertini, A. & 96 other authors ( 2003; ). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100, 4678–4683.[CrossRef]
    [Google Scholar]
  21. Konarska-Kozlowska, M. & Iyer, V. N. ( 1981; ). Physical and genetic organization of the IncN-group plasmid pCU1. Gene 14, 195–204.[CrossRef]
    [Google Scholar]
  22. Kuroda, M., Ohta, T., Uchiyama, I. & 34 other authors ( 2001; ). Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  23. Langer, T. ( 2000; ). AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci 25, 247–251.[CrossRef]
    [Google Scholar]
  24. Lowy, F. D. ( 1998; ). Staphylococcus aureus infections. N Engl J Med 339, 520–532.[CrossRef]
    [Google Scholar]
  25. Lysenko, E., Ogura, T. & Cutting, S. M. ( 1997; ). Characterization of the ftsH gene of Bacillus subtilis. Microbiology 143, 971–978.[CrossRef]
    [Google Scholar]
  26. Nilsson, D., Lauridsen, A. A., Tomoyasu, T. & Ogura, T. ( 1994; ). A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology 140, 2601–2610.[CrossRef]
    [Google Scholar]
  27. Novick, R. P. ( 1991; ). Genetic systems in staphylococci. Methods Enzymol 204, 587–636.
    [Google Scholar]
  28. Nygaard, P. ( 1993; ). Purine and pyrimidine salvage pathways. In Bacillus subtilis and Other Gram-Positive Bacteria, pp. 359–378. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  29. Ogura, T. & Wilkinson, A. J. ( 2001; ). AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6, 575–597.[CrossRef]
    [Google Scholar]
  30. Ogura, T., Tomoyasu, T., Yuki, T., Morimura, S., Begg, K. J., Donachie, W. D., Mori, H., Niki, H. & Hiraga, S. ( 1991; ). Structure and function of the ftsH gene in Escherichia coli. Res Microbiol 142, 279–282.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Laboratory.
  32. Schenk, S. & Laddaga, R. A. ( 1992; ). Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 73, 133–138.
    [Google Scholar]
  33. Schumann, W. ( 1999; ). FtsH – a single-chain charonin? FEMS Microbiol Rev 23, 1–11.
    [Google Scholar]
  34. Shirai, Y., Akiyama, Y. & Ito, K. ( 1996; ). Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones. J Bacteriol 178, 1141–1145.
    [Google Scholar]
  35. Taylor, D. ( 1999; ). Bacterial tellurite resistance. Trends Microbiol 7, 111–115.[CrossRef]
    [Google Scholar]
  36. Taylor, C. M., Beresford, M., Epton, H. A., Sigee, D. C., Shama, G., Andrew, P. W. & Roberts, I. S. ( 2002; ). Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184, 621–628.[CrossRef]
    [Google Scholar]
  37. Tomoyasu, T., Yuki, T., Morimura, S., Mori, H., Yamanaka, K., Niki, H., Hiraga, S. & Ogura, T. ( 1993; ). The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 175, 1344–1351.
    [Google Scholar]
  38. Tomoyasu, T., Gamer, J., Bukau, B. & 9 other authors ( 1995; ). Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ 32. EMBO J 14, 2551–2560.
    [Google Scholar]
  39. Watson, S. P., Antonio, M. & Foster, S. J. ( 1998a; ). Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery. Microbiology 144, 3159–3169.[CrossRef]
    [Google Scholar]
  40. Watson, S. P., Clements, M. O. & Foster, S. J. ( 1998b; ). Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 180, 1750–1758.
    [Google Scholar]
  41. Zellmeier, S., Zuber, U., Schumann, W. & Wiegert, T. ( 2003; ). The absence of FtsH metalloprotease activity causes overexpression of the σ W-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. J Bacteriol 185, 973–982.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26674-0
Loading
/content/journal/micro/10.1099/mic.0.26674-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error