1887

Abstract

The Gram-positive soil bacterium responds to oxidative stress by the activation of different cellular defence mechanisms. These are composed of scavenging enzymes as well as protection and repair systems organized in highly sophisticated networks. In this study, the peroxide and the superoxide stress stimulons of were characterized by means of transcriptomics and proteomics. The results demonstrate that oxidative-stress-responsive genes can be classified into two groups. One group encompasses genes which show similar expression patterns in the presence of both reactive oxygen species. Examples are members of the PerR and the Fur regulon which were induced by peroxide and superoxide stress. Similarly, both kinds of stress stimulated the activation of the stringent response. The second group is composed of genes primarily responding to one stimulus, like the members of the SOS regulon which were particularly upregulated in the presence of peroxide, and many genes involved in sulfate assimilation and methionine biosynthesis which were only induced by superoxide. Several genes encoding proteins of unknown function could be assigned to one of these groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26665-0
2004-02-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500497.html?itemId=/content/journal/micro/10.1099/mic.0.26665-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  2. Antelmann H., Bernhardt J., Schmid R., Mach H., Hecker M, Völker U. 1997; First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis . Electrophoresis 18:1451–1463 [CrossRef]
    [Google Scholar]
  3. Archibald F. S., Fridovich I. 1981; Manganese and defenses against oxygen toxicity in Lactobacillus plantarum . J Bacteriol 145:442–451
    [Google Scholar]
  4. Archibald F. S., Fridovich I. 1982; The scavenging of superoxide radical by manganous complexes in vitro. Arch Biochem Biophys 214:452–463 [CrossRef]
    [Google Scholar]
  5. Auger S., Danchin A., Martin-Verstraete I. 2002; Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol 184:5179–5186 [CrossRef]
    [Google Scholar]
  6. Baichoo N., Wang T., Ye R., Helmann J. D. 2002; Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629 [CrossRef]
    [Google Scholar]
  7. Benov L., Fridovich I. 1999; Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli . The transketolase connection. J Biol Chem 274:4202–4206 [CrossRef]
    [Google Scholar]
  8. Benov L., Fridovich I. 2002; Induction of the SoxRS regulon of Escherichia coli by glycolaldehyde. Arch Biochem Biophys 407:45–48 [CrossRef]
    [Google Scholar]
  9. Benov L., Kredich N. M., Fridovich I. 1996; The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271:21037–21040 [CrossRef]
    [Google Scholar]
  10. Bernhardt J., Buttner K., Scharf C., Hecker M. 1999; Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis . Electrophoresis 20:2225–2240 [CrossRef]
    [Google Scholar]
  11. Brown O. R., Smyk-Randall E., Draczynska-Lusiak B., Fee J. A. 1995; Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli : effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch Biochem Biophys 319:10–22 [CrossRef]
    [Google Scholar]
  12. Bsat N., Chen L., Helmann J. D. 1996; Mutation of the Bacillus subtilis alkyl hydroperoxide reductase ( ahpCF ) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586
    [Google Scholar]
  13. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198 [CrossRef]
    [Google Scholar]
  14. Büttner K., Bernhardt J., Scharf C. 7 other authors 2001; A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis . Electrophoresis 22:2908–2935 [CrossRef]
    [Google Scholar]
  15. Carlioz A., Touati D. 1986; Isolation of superoxide dismutase mutants in Escherichia coli : is superoxide dismutase necessary for aerobic life?. EMBO J 5:623–630
    [Google Scholar]
  16. Chae H. Z., Chung S. J., Rhee S. G. 1994; Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678
    [Google Scholar]
  17. Chen L., Keramati L., Helmann J. D. 1995; Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A 92:8190–8194 [CrossRef]
    [Google Scholar]
  18. Christman M. F., Storz G., Ames B. N. 1989; OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium , is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A 86:3484–3488 [CrossRef]
    [Google Scholar]
  19. Coppee J. Y., Auger S., Turlin E., Sekowska A., Le Caer J. P., Labas V., Vagner V., Danchin A., Martin-Verstraete I. 2001; Sulfur-limitation-regulated proteins in Bacillus subtilis : a two-dimensional gel electrophoresis study. Microbiology 147:1631–1640
    [Google Scholar]
  20. Dowds B. C., Murphy P., McConnell D. J., Devine K. M. 1987; Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis . J Bacteriol 169:5771–5775
    [Google Scholar]
  21. Eymann C., Homuth G., Scharf C., Hecker M. 2002; Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184:2500–2520 [CrossRef]
    [Google Scholar]
  22. Farr S. B., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol Rev 55:561–585
    [Google Scholar]
  23. Fernando M. R., Nanri H., Yoshitake S., Nagata-Kuno K., Minakami S. 1992; Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem 209:917–922 [CrossRef]
    [Google Scholar]
  24. Fitzpatrick T. B., Amrhein N., Macheroux P. 2003; Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897 [CrossRef]
    [Google Scholar]
  25. Fridovich I. 1995; Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112 [CrossRef]
    [Google Scholar]
  26. Fridovich I. 1997; Superoxide anion radical (), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517 [CrossRef]
    [Google Scholar]
  27. Fuangthong M., Atichartpongkul S., Mongkolsuk S., Helmann J. D. 2001; OhrR is a repressor of ohrA , a key organic hydroperoxide resistance determinant in Bacillus subtilis . J Bacteriol 183:4134–4141 [CrossRef]
    [Google Scholar]
  28. Fuangthong M., Herbig A. F., Bsat N., Helmann J. D. 2002; Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286 [CrossRef]
    [Google Scholar]
  29. Gardner P. R., Fridovich I. 1991; Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333
    [Google Scholar]
  30. Gaudu P., Moon N., Weiss B. 1997; Regulation of the SoxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J Biol Chem 272:5082–5086 [CrossRef]
    [Google Scholar]
  31. Greenberg J. T., Demple B. 1989; A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171:3933–3939
    [Google Scholar]
  32. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli . Proc Natl Acad Sci U S A 87:6181–6185 [CrossRef]
    [Google Scholar]
  33. Grundy F. J., Henkin T. M. 1998; The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 30:737–749 [CrossRef]
    [Google Scholar]
  34. Hecker M., Völker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91
    [Google Scholar]
  35. Helmann J. D., Wu M. F., Gaballa A., Kobel P. A., Morshedi M. M., Fawcett P., Paddon C. 2003; The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253 [CrossRef]
    [Google Scholar]
  36. Henle E. S., Linn S. 1997; Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272:19095–19098 [CrossRef]
    [Google Scholar]
  37. Herbig A. F., Helmann J. D. 2001; Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859
    [Google Scholar]
  38. Herbig A., Helmann J. D. 2002; Metal ion uptake and oxidative stress. In Bacillus and its Closest Relatives pp 405–414 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Hidalgo E., Ding H., Demple B. 1997; Redox signal transduction: mutations shifting [2Fe–2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 88:121–129 [CrossRef]
    [Google Scholar]
  40. Imlay J. A. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153
    [Google Scholar]
  41. Imlay J. A., Fridovich I. 1991; Assay of metabolic superoxide production in Escherichia coli . J Biol Chem 266:6957–6965
    [Google Scholar]
  42. Inaoka T., Matsumura Y., Tsuchido T. 1998; Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis . J Bacteriol 180:3697–3703
    [Google Scholar]
  43. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J Bacteriol 181:1939–1943
    [Google Scholar]
  44. Kawai Y., Moriya S., Ogasawara N. 2003; Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis . Mol Microbiol 47:1113–1122 [CrossRef]
    [Google Scholar]
  45. Kobori T., Sasaki H., Lee W. C., Zenno S., Saigo K., Murphy M. E., Tanokura M. 2001; Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem 276:2816–2823 [CrossRef]
    [Google Scholar]
  46. Krüger E., Hecker M. 1998; The first gene of the Bacillus subtilis clpC operon, ctsR , encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180:6681–6688
    [Google Scholar]
  47. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [CrossRef]
    [Google Scholar]
  48. Leichert L. I., Scharf C., Hecker M. 2003; Global characterization of disulfide stress in Bacillus subtilis . J Bacteriol 185:1967–1975 [CrossRef]
    [Google Scholar]
  49. Love P. E., Lyle M. J., Yasbin R. E. 1985; DNA-damage-inducible ( din ) loci are transcriptionally activated in competent Bacillus subtilis . Proc Natl Acad Sci U S A 82:6201–6205 [CrossRef]
    [Google Scholar]
  50. Mandal M., Boese B., Barrick J. E., Winkler W. C., Breaker R. R. 2003; Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586 [CrossRef]
    [Google Scholar]
  51. McDaniel B. A., Grundy F. J., Artsimovitch I., Henkin T. M. 2003; Transcription termination control of the S box system: direct measurement of S -adenosylmethionine by the leader RNA. Proc Natl Acad Sci U S A 100:3083–3088 [CrossRef]
    [Google Scholar]
  52. Messner K. R., Imlay J. A. 1999; The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem 274:10119–10128 [CrossRef]
    [Google Scholar]
  53. Miller M. C., Resnick J. B., Smith B. T., Lovett C. M. Jr 1996; The Bacillus subtilis dinR gene codes for the analogue of Escherichia coli LexA. Purification and characterization of the DinR protein.. J Biol Chem 271:33502–33508 [CrossRef]
    [Google Scholar]
  54. Moskovitz J., Rahman M. A., Strassman J., Yancey S. O., Kushner S. R., Brot N., Weissbach H. 1995; Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol 177:502–507
    [Google Scholar]
  55. Murphy P., Dowds B. C., McConnell D. J., Devine K. M. 1987; Oxidative stress and growth temperature in Bacillus subtilis . J Bacteriol 169:5766–5770
    [Google Scholar]
  56. Newton G. L., Arnold K., Price M. S. 7 other authors 1996; Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995
    [Google Scholar]
  57. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Hecker M, Völker U. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631 [CrossRef]
    [Google Scholar]
  58. Pomposiello P. J., Demple B. 2002; Global adjustment of microbial physiology during free radical stress. Adv Microb Physiol 46:319–341
    [Google Scholar]
  59. Spector A., Yan G. Z., Huang R. R., McDermott M. J., Gascoyne P. R., Pigiet V. 1988; The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 263:4984–4990
    [Google Scholar]
  60. Stadtman E. R. 1993; Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821 [CrossRef]
    [Google Scholar]
  61. Storz G., Zheng M. 2000; Oxidative stress. In Bacterial Stress Responses pp 47–60 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  62. Stülke J., Hanschke R., Hecker M. 1993; Temporal activation of betaglucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139:2041–2045 [CrossRef]
    [Google Scholar]
  63. VanBogelen R. A., Kelley P. M., Neidhardt F. C. 1987; Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli . J Bacteriol 169:26–32
    [Google Scholar]
  64. van der Ploeg J. R., Cummings N. J., Leisinger T., Connerton I. F. 1998; Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology 144:2555–2561 [CrossRef]
    [Google Scholar]
  65. Walkup L. K., Kogoma T. 1989; Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J Bacteriol 171:1476–1484
    [Google Scholar]
  66. Zenno S., Kobori T., Tanokura M., Saigo K. 1998; Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable of interacting with the bacterial luciferase. Biosci Biotechnol Biochem 62:1978–1987 [CrossRef]
    [Google Scholar]
  67. Zheng M., Aslund F., Storz G. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721 [CrossRef]
    [Google Scholar]
  68. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol 181:4639–4643
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26665-0
Loading
/content/journal/micro/10.1099/mic.0.26665-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error