1887

Abstract

The Gram-positive soil bacterium responds to oxidative stress by the activation of different cellular defence mechanisms. These are composed of scavenging enzymes as well as protection and repair systems organized in highly sophisticated networks. In this study, the peroxide and the superoxide stress stimulons of were characterized by means of transcriptomics and proteomics. The results demonstrate that oxidative-stress-responsive genes can be classified into two groups. One group encompasses genes which show similar expression patterns in the presence of both reactive oxygen species. Examples are members of the PerR and the Fur regulon which were induced by peroxide and superoxide stress. Similarly, both kinds of stress stimulated the activation of the stringent response. The second group is composed of genes primarily responding to one stimulus, like the members of the SOS regulon which were particularly upregulated in the presence of peroxide, and many genes involved in sulfate assimilation and methionine biosynthesis which were only induced by superoxide. Several genes encoding proteins of unknown function could be assigned to one of these groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26665-0
2004-02-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500497.html?itemId=/content/journal/micro/10.1099/mic.0.26665-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol81:741–746
    [Google Scholar]
  2. Antelmann H., Bernhardt J., Schmid R., Mach H., Hecker M, Völker U.. 1997; First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis . Electrophoresis18:1451–1463[CrossRef]
    [Google Scholar]
  3. Archibald F. S., Fridovich I. 1981; Manganese and defenses against oxygen toxicity in Lactobacillus plantarum . J Bacteriol145:442–451
    [Google Scholar]
  4. Archibald F. S., Fridovich I. 1982; The scavenging of superoxide radical by manganous complexes in vitro. Arch Biochem Biophys214:452–463[CrossRef]
    [Google Scholar]
  5. Auger S., Danchin A., Martin-Verstraete I. 2002; Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol184:5179–5186[CrossRef]
    [Google Scholar]
  6. Baichoo N., Wang T., Ye R., Helmann J. D. 2002; Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol45:1613–1629[CrossRef]
    [Google Scholar]
  7. Benov L., Fridovich I. 1999; Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli . The transketolase connection. J Biol Chem274:4202–4206[CrossRef]
    [Google Scholar]
  8. Benov L., Fridovich I. 2002; Induction of the SoxRS regulon of Escherichia coli by glycolaldehyde. Arch Biochem Biophys407:45–48[CrossRef]
    [Google Scholar]
  9. Benov L., Kredich N. M., Fridovich I. 1996; The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem271:21037–21040[CrossRef]
    [Google Scholar]
  10. Bernhardt J., Buttner K., Scharf C., Hecker M. 1999; Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis . Electrophoresis20:2225–2240[CrossRef]
    [Google Scholar]
  11. Brown O. R., Smyk-Randall E., Draczynska-Lusiak B., Fee J. A. 1995; Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli : effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch Biochem Biophys319:10–22[CrossRef]
    [Google Scholar]
  12. Bsat N., Chen L., Helmann J. D. 1996; Mutation of the Bacillus subtilis alkyl hydroperoxide reductase ( ahpCF ) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol178:6579–6586
    [Google Scholar]
  13. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198[CrossRef]
    [Google Scholar]
  14. Büttner K., Bernhardt J., Scharf C.. 7 other authors 2001; A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis . Electrophoresis22:2908–2935[CrossRef]
    [Google Scholar]
  15. Carlioz A., Touati D. 1986; Isolation of superoxide dismutase mutants in Escherichia coli : is superoxide dismutase necessary for aerobic life?. EMBO J5:623–630
    [Google Scholar]
  16. Chae H. Z., Chung S. J., Rhee S. G. 1994; Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem269:27670–27678
    [Google Scholar]
  17. Chen L., Keramati L., Helmann J. D. 1995; Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A92:8190–8194[CrossRef]
    [Google Scholar]
  18. Christman M. F., Storz G., Ames B. N. 1989; OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium , is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A86:3484–3488[CrossRef]
    [Google Scholar]
  19. Coppee J. Y., Auger S., Turlin E., Sekowska A., Le Caer J. P., Labas V., Vagner V., Danchin A., Martin-Verstraete I. 2001; Sulfur-limitation-regulated proteins in Bacillus subtilis : a two-dimensional gel electrophoresis study. Microbiology147:1631–1640
    [Google Scholar]
  20. Dowds B. C., Murphy P., McConnell D. J., Devine K. M. 1987; Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis . J Bacteriol169:5771–5775
    [Google Scholar]
  21. Eymann C., Homuth G., Scharf C., Hecker M. 2002; Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol184:2500–2520[CrossRef]
    [Google Scholar]
  22. Farr S. B., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol Rev55:561–585
    [Google Scholar]
  23. Fernando M. R., Nanri H., Yoshitake S., Nagata-Kuno K., Minakami S. 1992; Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem209:917–922[CrossRef]
    [Google Scholar]
  24. Fitzpatrick T. B., Amrhein N., Macheroux P. 2003; Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem278:19891–19897[CrossRef]
    [Google Scholar]
  25. Fridovich I. 1995; Superoxide radical and superoxide dismutases. Annu Rev Biochem64:97–112[CrossRef]
    [Google Scholar]
  26. Fridovich I. 1997; Superoxide anion radical (), superoxide dismutases, and related matters. J Biol Chem272:18515–18517[CrossRef]
    [Google Scholar]
  27. Fuangthong M., Atichartpongkul S., Mongkolsuk S., Helmann J. D. 2001; OhrR is a repressor of ohrA , a key organic hydroperoxide resistance determinant in Bacillus subtilis . J Bacteriol183:4134–4141[CrossRef]
    [Google Scholar]
  28. Fuangthong M., Herbig A. F., Bsat N., Helmann J. D. 2002; Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol184:3276–3286[CrossRef]
    [Google Scholar]
  29. Gardner P. R., Fridovich I. 1991; Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem266:19328–19333
    [Google Scholar]
  30. Gaudu P., Moon N., Weiss B. 1997; Regulation of the SoxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J Biol Chem272:5082–5086[CrossRef]
    [Google Scholar]
  31. Greenberg J. T., Demple B. 1989; A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol171:3933–3939
    [Google Scholar]
  32. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli . Proc Natl Acad Sci U S A87:6181–6185[CrossRef]
    [Google Scholar]
  33. Grundy F. J., Henkin T. M. 1998; The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol30:737–749[CrossRef]
    [Google Scholar]
  34. Hecker M., Völker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol44:35–91
    [Google Scholar]
  35. Helmann J. D., Wu M. F., Gaballa A., Kobel P. A., Morshedi M. M., Fawcett P., Paddon C. 2003; The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol185:243–253[CrossRef]
    [Google Scholar]
  36. Henle E. S., Linn S. 1997; Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem272:19095–19098[CrossRef]
    [Google Scholar]
  37. Herbig A. F., Helmann J. D. 2001; Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol41:849–859
    [Google Scholar]
  38. Herbig A., Helmann J. D. 2002; Metal ion uptake and oxidative stress. In Bacillus and its Closest Relatives pp405–414 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Hidalgo E., Ding H., Demple B. 1997; Redox signal transduction: mutations shifting [2Fe–2S] centers of the SoxR sensor-regulator to the oxidized form. Cell88:121–129[CrossRef]
    [Google Scholar]
  40. Imlay J. A. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol46:111–153
    [Google Scholar]
  41. Imlay J. A., Fridovich I. 1991; Assay of metabolic superoxide production in Escherichia coli . J Biol Chem266:6957–6965
    [Google Scholar]
  42. Inaoka T., Matsumura Y., Tsuchido T. 1998; Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis . J Bacteriol180:3697–3703
    [Google Scholar]
  43. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J Bacteriol181:1939–1943
    [Google Scholar]
  44. Kawai Y., Moriya S., Ogasawara N. 2003; Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis . Mol Microbiol47:1113–1122[CrossRef]
    [Google Scholar]
  45. Kobori T., Sasaki H., Lee W. C., Zenno S., Saigo K., Murphy M. E., Tanokura M. 2001; Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem276:2816–2823[CrossRef]
    [Google Scholar]
  46. Krüger E., Hecker M. 1998; The first gene of the Bacillus subtilis clpC operon, ctsR , encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol180:6681–6688
    [Google Scholar]
  47. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature390:249–256[CrossRef]
    [Google Scholar]
  48. Leichert L. I., Scharf C., Hecker M. 2003; Global characterization of disulfide stress in Bacillus subtilis . J Bacteriol185:1967–1975[CrossRef]
    [Google Scholar]
  49. Love P. E., Lyle M. J., Yasbin R. E. 1985; DNA-damage-inducible ( din ) loci are transcriptionally activated in competent Bacillus subtilis . Proc Natl Acad Sci U S A82:6201–6205[CrossRef]
    [Google Scholar]
  50. Mandal M., Boese B., Barrick J. E., Winkler W. C., Breaker R. R. 2003; Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell113:577–586[CrossRef]
    [Google Scholar]
  51. McDaniel B. A., Grundy F. J., Artsimovitch I., Henkin T. M. 2003; Transcription termination control of the S box system: direct measurement of S -adenosylmethionine by the leader RNA. Proc Natl Acad Sci U S A100:3083–3088[CrossRef]
    [Google Scholar]
  52. Messner K. R., Imlay J. A. 1999; The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem274:10119–10128[CrossRef]
    [Google Scholar]
  53. Miller M. C., Resnick J. B., Smith B. T., Lovett C. M. Jr. 1996; The Bacillus subtilis dinR gene codes for the analogue of Escherichia coli LexA. Purification and characterization of the DinR protein.. J Biol Chem271:33502–33508[CrossRef]
    [Google Scholar]
  54. Moskovitz J., Rahman M. A., Strassman J., Yancey S. O., Kushner S. R., Brot N., Weissbach H. 1995; Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol177:502–507
    [Google Scholar]
  55. Murphy P., Dowds B. C., McConnell D. J., Devine K. M. 1987; Oxidative stress and growth temperature in Bacillus subtilis . J Bacteriol169:5766–5770
    [Google Scholar]
  56. Newton G. L., Arnold K., Price M. S.. 7 other authors 1996; Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol178:1990–1995
    [Google Scholar]
  57. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Hecker M, Völker U.. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol183:5617–5631[CrossRef]
    [Google Scholar]
  58. Pomposiello P. J., Demple B. 2002; Global adjustment of microbial physiology during free radical stress. Adv Microb Physiol46:319–341
    [Google Scholar]
  59. Spector A., Yan G. Z., Huang R. R., McDermott M. J., Gascoyne P. R., Pigiet V. 1988; The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem263:4984–4990
    [Google Scholar]
  60. Stadtman E. R. 1993; Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem62:797–821[CrossRef]
    [Google Scholar]
  61. Storz G., Zheng M. 2000; Oxidative stress. In Bacterial Stress Responses pp47–60 Edited by Storz G., Hengge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  62. Stülke J., Hanschke R., Hecker M. 1993; Temporal activation of betaglucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol139:2041–2045[CrossRef]
    [Google Scholar]
  63. VanBogelen R. A., Kelley P. M., Neidhardt F. C. 1987; Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli . J Bacteriol169:26–32
    [Google Scholar]
  64. van der Ploeg J. R., Cummings N. J., Leisinger T., Connerton I. F. 1998; Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology144:2555–2561[CrossRef]
    [Google Scholar]
  65. Walkup L. K., Kogoma T. 1989; Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J Bacteriol171:1476–1484
    [Google Scholar]
  66. Zenno S., Kobori T., Tanokura M., Saigo K. 1998; Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable of interacting with the bacterial luciferase. Biosci Biotechnol Biochem62:1978–1987[CrossRef]
    [Google Scholar]
  67. Zheng M., Aslund F., Storz G. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279:1718–1721[CrossRef]
    [Google Scholar]
  68. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26665-0
Loading
/content/journal/micro/10.1099/mic.0.26665-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error